K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2021

a) Ta có: \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

Ta có: \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8\)

Ta có: \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

\(\Delta AHB\) vuông tại H có đường cao HD \(\Rightarrow AD.AB=AH^2\)

\(\Delta AHC\) vuông tại H có đường cao HE \(\Rightarrow AE.AC=AH^2\) 

\(\Rightarrow AD.AB=AE.AC\Rightarrow\dfrac{AD}{AE}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\)

b) Vì \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow DAEH\) là hình chữ nhật

\(\Rightarrow DE=AH\)

Ta có: \(BC.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AB.AC}{BC}=\dfrac{AH.BC}{BC}=AH\)

\(\Rightarrow BC.sinB.cosB=DE\)

 

 

1 tháng 12 2016

sai đề rồi hai đường chéo hình vuông cắt nhau tại trung điểm mỗi đoạn

2 tháng 12 2016

a, Xét tứ giác EBDF có :

AE=EB(E là trung điểm của AB)

Và DF=FC(F là trung điểm của DC)

Mà AB=DC và AB//DC(t/ch h/vuông)

=>EB=DF và EB//DF

Hay EBFD là hình bình hành 

b, Gọi T là giao điểm của 2 đường chéo EF và DB

Hay T là trung điểm của BD và EF (Vì EBFD là HBH)       (1)

Ta lại có : T cũng là trung điểm của hình vuông ABCD (t/ch h/vuông) (2)

Từ (1)(2) suy ra AC,DB,EF đồng quy tại T (đpcm)

c,Xét tứ giác AECK có :

EB//FC và EB=FC (AB=DC và AB//DC)

Mà : FC=CK

=> EB=CK và EB//CK 

Hay AEKC là hình bình hành

Vậy AC//EK (t/ch hình vuông)

d, hình không hiểu để cho lắm

k đúng cho mình nhé.