Cho \(\Delta ABC\) vuông tại A , hình vuông ADEF, D \(\in AB,E\in BC,F\in AC\):
a) CM : BD.CF= \(\dfrac{AE^2}{2}\)
b) CM : \(\dfrac{BD}{CF}\)= \(\dfrac{AB^2}{AC^2}\).
Giúp mình nk , gấp lắm ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
Ta có: \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8\)
Ta có: \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
\(\Delta AHB\) vuông tại H có đường cao HD \(\Rightarrow AD.AB=AH^2\)
\(\Delta AHC\) vuông tại H có đường cao HE \(\Rightarrow AE.AC=AH^2\)
\(\Rightarrow AD.AB=AE.AC\Rightarrow\dfrac{AD}{AE}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\)
b) Vì \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow DAEH\) là hình chữ nhật
\(\Rightarrow DE=AH\)
Ta có: \(BC.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AB.AC}{BC}=\dfrac{AH.BC}{BC}=AH\)
\(\Rightarrow BC.sinB.cosB=DE\)
sai đề rồi hai đường chéo hình vuông cắt nhau tại trung điểm mỗi đoạn
a, Xét tứ giác EBDF có :
AE=EB(E là trung điểm của AB)
Và DF=FC(F là trung điểm của DC)
Mà AB=DC và AB//DC(t/ch h/vuông)
=>EB=DF và EB//DF
Hay EBFD là hình bình hành
b, Gọi T là giao điểm của 2 đường chéo EF và DB
Hay T là trung điểm của BD và EF (Vì EBFD là HBH) (1)
Ta lại có : T cũng là trung điểm của hình vuông ABCD (t/ch h/vuông) (2)
Từ (1)(2) suy ra AC,DB,EF đồng quy tại T (đpcm)
c,Xét tứ giác AECK có :
EB//FC và EB=FC (AB=DC và AB//DC)
Mà : FC=CK
=> EB=CK và EB//CK
Hay AEKC là hình bình hành
Vậy AC//EK (t/ch hình vuông)
d, hình không hiểu để cho lắm
k đúng cho mình nhé.