K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

Tam giác AIE không thể =  tam giác AIH được.Bạn viết nhầm đề bài không đấy?

4 tháng 4 2018

sai de nha bn

a) Xét ΔAEI vuông tại I và ΔAHI vuông tại I có

AI chung

IE=IH(gt)

Do đó: ΔAEI=ΔAHI(hai cạnh góc vuông)

Suy ra: AE=AH(hai cạnh tương ứng)(1)

Xét ΔAHK vuông tại K và ΔAFK vuông tại K có

AK chung

KH=KF(gt)

Do đó: ΔAHK=ΔAFK(hai cạnh góc vuông)

Suy ra: AH=AF(hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra AE=AF(đpcm)

b) Ta có: ΔAEI=ΔAHI(cmt)

nên \(\widehat{EAI}=\widehat{HAI}\)(hai góc tương ứng)

hay \(\widehat{EAB}=\widehat{BAH}\)

Ta có: ΔAHK=ΔAFK(cmt)

nên \(\widehat{HAK}=\widehat{FAK}\)(hai góc tương ứng)

hay \(\widehat{HAC}=\widehat{FAC}\)

Ta có: \(\widehat{EAB}+\widehat{HAB}+\widehat{HAC}+\widehat{FAC}=\widehat{EAF}\)

\(\Leftrightarrow\widehat{EAF}=2\cdot\widehat{HAB}+2\cdot\widehat{HAC}\)

\(\Leftrightarrow\widehat{EAF}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

\(\Leftrightarrow\widehat{EAF}=2\cdot\widehat{BAC}\)

\(\Leftrightarrow\widehat{EAF}=2\cdot60^0=120^0\)

Xét ΔAEF có AE=AF(cmt)

nên ΔAEF cân tại A(Định nghĩa tam giác cân)

\(\Leftrightarrow\widehat{AEF}=\widehat{AFE\:}=\dfrac{180^0-\widehat{EAF}}{2}\)(Số đo của các góc ở đáy trong ΔAEF cân tại A)

\(\Leftrightarrow\widehat{AEF}=\widehat{AFE}=\dfrac{180^0-120^0}{2}\)

hay \(\widehat{AEF}=30^0\)\(\widehat{AFE}=30^0\)

Vậy: \(\widehat{EAF}=120^0\)\(\widehat{AEF}=30^0\)\(\widehat{AFE}=30^0\)

a: Xét ΔAEH có 

AI là đường cao

AI là đường trung tuyến

Do đó: ΔAEH cân tại A

hay AH=AE(1)

Xét ΔAFH có

AK là đường cao

AK là đường trung tuyến

Do đó: ΔAFH cân tại A

hay AH=AF(2)

Từ (1) và (2)suy ra AE=AF

b: \(\widehat{EAF}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot60^0=120^0\)

nên \(\widehat{AEF}=\widehat{AFE}=30^0\)

20 tháng 10 2016

à quên không vẽ hình cũng được

a) Xét ΔABD và ΔACD có 

AB=AC(ΔBAC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔABD=ΔACD(c-g-c)

b) Ta có: ΔABD=ΔACD(cmt)

nên DB=DC(hai cạnh tương ứng)

mà B,D,C thẳng hàng(gt)

nên D là trung điểm của BC

Xét ΔABC có

AD là đường trung tuyến ứng với cạnh BC(cmt)

CF là đường trung tuyến ứng với cạnh AB(gt)

AD cắt CF tại G(gt)

Do đó: G là trọng tâm của ΔABC(Tính chất ba đường trung tuyến của tam giác)