Cho a, b là các số nguyên. Chứng minh rằng các số sau đây là số chính phương:
a. A=(a+1)(a+3)(a+5)(a+7)+16
b. B=(a-b)(a-2b)(a-3b)(a-4b)+b4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải toán , trước đây mua 15 quyển vở phải trả 105000 đồng,hiện nay giá bán mỗi quyển vở giảm đi 2000 đồng, hỏi với 105000 đồng , hiện nay có thể mua được bao nhiêu quyển vở như thế
\(\left(a+b\right)\left(a+2b\right)\left(a+3b\right)\left(a+4b\right)+b^4\)
\(=\left(a+b\right)\left(a+4b\right)\left(a+2b\right)\left(a+3b\right)+b^4\)
\(=\left(a^2+5ab+4b^2\right)\left(a^2+5ab+6b^2\right)+b^4\)
Đặt\(a^2+5ab+5b^2=t\)
Biểu thức đã cho bằng\(\left(t-b^2\right)\left(t+b^2\right)+b^4\)
\(=t^2-b^4+b^4=t^2\)
Mà\(a;b\in Z\Rightarrow t\in Z\Rightarrow t^2\)là số chính phương
( a + b ) ( a + 2b ) ( a + 3b ) ( a + 4b ) + b4
= ( a2 + 5ab + 4b2 ) ( a2 + 5ab + 6b2 ) + b4
= ( a2 + 5ab + 5b2 - b2 ) ( a2 + 5ab + 5b2 + b2 ) + b4
= ( a2 + 5ab + 5b2 ) - b4 + b4
= a2 + 5ab + 5b2 là số chính phương
a, A=(a+1)(a+3)(a+5)(a+7)+16
=[(a+1)(a+7)][(a+3)(a+5)] +16
= (a^2+8a+7)(a^2+8a+15) +16
Đặt a^2+8a+7=t,ta có:
A = t(t+8)+16
= t^2 +8t+16
= (t+4)^2
= (a^2+8a+11)^2
b, B = a(a+1)(a+2)(a+3)+1
= a(a+3)(a+1)(a+2)+1
= (a^2+3a)(a^2+3a+2) +1
Đặt a^2 +3a =k,ta có:
B =k(k+2)+1
= k^2 +2k+1
= (k+1)^2
= (a^2+3a+1)^2
c,C = (a-b)(a-4b)(a-2b)(a-3b)
= (a^2 -5ab+4b^2)(a^2 -5ab+6b^2) +b^4
Đặt a^2 -5ab+5b^2 =c,ta có:
C = (c-b^2)(c+b^2)+b^4
= c^2 -b^4+b^4
= c^2
= (a^2-5ab+5b^2)^2
Bạn nên áp dụng phương pháp đổi biến thì làm sẽ dễ dàng hơn. Mình cho bạn 1 cách: Thường có 4 thừa số nhân với nhau và cộng thêm 1 số thì bạn nhóm thừa số thứ 1 và thừa số thứ 4,thừa số thứ 2 và thừa số thứ 3 rồi bạn thấy cái gì chung trong 2 thừa số thi bạn đổi biến là a,b,c,...Chúc bạn học tốt.
giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp
nên 2b+c-2c-a = 2b-a-c chia hết cho 3
lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3
tương tự ta có c-a và a-b chia hết cho 3
cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81
a: \(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+16\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+16\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+16\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+121\)
\(=\left(a^2+8a+11\right)^2\)
b: \(\left(a-b\right)\left(a-2b\right)\left(a-3b\right)\left(a-4b\right)+b^4\)
\(=\left(a^2-5ab+4b^2\right)\left(a^2-5ab+6b^2\right)+b^4\)
\(=\left(a^2-5ab\right)^2+10b^2\left(a^2-5ab\right)+24b^4+b^4\)
\(=\left(a^2-5ab\right)^2+2\cdot\left(a^2-5ab\right)\cdot5b^2+\left(5b^2\right)^2\)
\(=\left(a^2-5ab+5b^2\right)^2\)