K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

tặng 100k cho ai giải dc bài này từ ngày 26/8/2021 -> 27/8/2021 

a,1/a+1/b+1/c=1/a+b+c

⇔(a+b)(b+c)(c+a)=0

⇔a = -b

⇔ b = -c

⇔ c = -a

⇒A=(a3+b3)(b3+c3)(c3+a3)=0

b,

vi vai tro cua a,b,c la nhu nhau nen ta gia su a+b=0 vay a+b+c=0

⇒ C = 3

Thay c=3 vao bieu thuc P ta co:

P=(a - 3 )2017 . (b - 3 )2017 . (3 - 3)2017 = 0

Vay P = 0

HT~

26 tháng 8 2021

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{3} \Leftrightarrow \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}(vì a+b+c=3)\)

\(\Leftrightarrow \dfrac{1}{a}+ \dfrac{1}{b}= \dfrac{1}{a+b+c}- \dfrac{1}{c }\)

\(\Leftrightarrow \dfrac{b+a}{ab}=\dfrac{c-a-b-c}{ac+bc+c^{2}}\)

\(\Leftrightarrow \dfrac{a+b}{ab}=\dfrac{a+b}{-ac-bc-c^2}\)

\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ ab=-ac-bc-c^2 \end{array} \right.\)

\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ ab+ac+bc+c^2=0 \end{array} \right.\)

\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ (a+c)(b+c)=0 \end{array} \right.\)

\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ a+c=0\\ b+c=0 \end{array} \right.\)

Vì vai trò của a,b,c là như nhau nên ta giả sử a+b=0

mà a+b+c=0 

\(\Rightarrow c=3\)

Thay c=3 vào biểu thức P ta có:

\(P=(a-3)^{2017}.(b-3)^{2017}.(3-3)^{2017} =0 \)

Vậy P=0

11 tháng 12 2019

Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath

Thay các giá trị a, b, c, d vào M nhận đc giá trị M = 0

11 tháng 12 2019

Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath

Thya các giá trị của a, b, c., d vào M . Tính đc M = 0

NV
17 tháng 1 2022

\(a^3+b^3+c^3-3abc=1\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=1\) (1)

Do \(a^2+b^2+c^2-ab-bc-ca>0\Rightarrow a+b+c>0\)

(1)\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca+\dfrac{1}{a+b+c}\)

\(\Leftrightarrow3a^2+3b^2+3c^2=\left(a+b+c\right)^2+\dfrac{1}{a+b+c}\ge3\)

\(\Rightarrow a^2+b^2+c^2\ge1\)

19 tháng 1 2022

Bạn có thể giải thích phần (1) <=> với cái đó được ko. Mình vẫn chưa hiểu mấy bước sau lắm