K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

1b. Ta thấy \(225-15^2=0\)

Mọi số nhân với 0 đều = 0

=> \(2017^0=1\)

13 tháng 9 2017

2.

\(A=\dfrac{2.5^{22}-9.5^{21}}{25^{10}}:\dfrac{5\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}=\dfrac{5^{21}\left(2.5-9\right)}{5^{20}}:\dfrac{5.7^{14}\left(3.7-19\right)}{7^{15}\left(7+3\right)}=5.1:\dfrac{5.7^{14}.2}{7^{15}.10}=5:\dfrac{1}{7}=35\)

10 tháng 9 2017

\(2017\cdot \left(225-1^2\right)\left(225-2^2\right)....\left(225-15^2\right).....\left(225-56^2\right)\)

\(=2017\cdot224\cdot221\cdot\cdot\cdot\cdot\cdot0\cdot\cdot\cdot\left(-2911\right)\)

\(=0\)

a) Ta có: \(-\dfrac{3}{2}\sqrt{9-4\sqrt{5}}+\sqrt{\left(-4\right)^2\cdot\left(1+\sqrt{5}\right)^2}\)

\(=\dfrac{-3}{2}\left(\sqrt{5}-2\right)+4\cdot\left(\sqrt{5}+1\right)\)

\(=\dfrac{-3}{2}\sqrt{5}+3+4\sqrt{5}+4\)

\(=\dfrac{5}{2}\sqrt{5}+7\)

b) Ta có: \(\left(1+\dfrac{1}{\tan^225^0}\right)\cdot\sin^225^0-\tan55^0\cdot\tan35^0\)

\(=\dfrac{\tan^225^0+1}{\tan^225^0}\cdot\sin25^0-1\)

\(=\left(\dfrac{\sin^225^0}{\cos^225^0}+1\right)\cdot\dfrac{\cos^225^0}{\sin^225^0}\cdot\sin25^0-1\)

\(=\dfrac{\sin^225^0+\cos^225^0}{\cos^225^0}\cdot\dfrac{\cos^225^0}{\sin25^0}-1\)

\(=\dfrac{1}{\sin25^0}-1\)

\(=\dfrac{1-\sin25^0}{\sin25^0}\)

24 tháng 7 2015

A=1

vì có mũ là 225-15^2=0

suy ra cả mũ bằng 0

hay A=1994^0=1

1 tháng 8 2017

Ta có : D = (1 + 2 + 22 + 23 + ....... + 22004) - 22005

Đặt A = 1 + 2 + 22 + 23 + ....... + 22004

=> 2A = 2 + 22 + 23 + ....... + 22005 

=> 2A - A = 22005 - 1

=> A = 22005 - 1

Thay vào ta có : D = (1 + 2 + 22 + 23 + ....... + 22004) - 22005

=> D = 22005 - 1 - 22005

=> D = -1

1 tháng 8 2017

cậu làm còn thiếu bước kìa Nguyễn Việt Hoàng

2 tháng 8 2017

a,\(A=1993^{1^{2\times3\times4\times...\times1994}}=1993^1=1993\)

b,\(B=1994^{\left(225-1^2\right)\times\left(225-2^2\right).....\left(225-50^2\right)}\)

     \(=1994^{\left(225-1^2\right)\times\left(225-2^2\right)...\left(225-15^2\right)...\left(225-50^2\right)}\)

     \(=1994^{\left(225-1^2\right)\times\left(225-2^2\right)...\left(225-225\right)...\left(225-50^2\right)}\)

     \(=1994^{\left(225-1^2\right)\times\left(225-2^2\right)...\times0\times...\left(225-50^2\right)}\)

     \(=1994^0=1\)

c, \(C=\frac{2^{10}\times3^{31}+2^{40}\times3^6}{2^{11}\times3^{31}+2^{41}\times3^6}\)

       \(=\frac{2^{10}\times3^6\times\left(1\times3^{25}+2^{30}\times1\right)}{2^{11}\times3^6\times\left(1\times3^{25}+2^{30}\times1\right)}\)

       \(=\frac{2^{10}}{2^{11}}=\frac{1}{2}\)