Các Bạn Giúp Mình Mấy Câu Này Nha:
Các Bạn Giúp Mình Nha, Mai Mình Học RỒi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mục đích học tập của học sinh là :
- Học tập để trở thành con ngoan , trò giỏi , cháu ngoan Bác Hồ , người công dân tốt
- Trở thành con người chân chính có đủ khả năng lao động để tự lập nghiệp và góp phần xây dựng quê hương , đất nước , bảo vệ Tổ quốc Xã Hội Chủ Nghĩa
Chúc Bạn Thi Thật Tốt
\(\left(X^2+2x+1\right)+\left(4y^2+\frac{4.1y}{4}+\frac{1}{16}\right)+2-\frac{1}{16}.\)
\(\left(x+1\right)^2+\left(2y+\frac{1}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)
\(x^2+4y^2+2x-y+2\)
\(=\left(x^2+2x+1\right)+\left[\left(2y\right)^2-2.2y.\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{15}{16}\)
\(=\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\)
Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(2y-\frac{1}{4}\right)\ge0\forall y\end{cases}\Rightarrow\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\ge\frac{15}{16}}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(2y-\frac{1}{4}\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\2y-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}}\)
Vậy GTNN của \(x^2+4y^2+2x-y+2=\frac{15}{16}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}\)
Tham khảo nhé~
1 when
2 how many
3 which
4 who
5 why
1 what is on television tonight
2 who is your favorite MC television ?
3 how much time does tina spend watching
4 why do they like to watch cartoons ?
5 what do you like best television programme
1, \(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}\)
=> \(\dfrac{a+b}{c}-1=\dfrac{a+c}{b}-1=\dfrac{b+c}{a}-1\)
=> \(\dfrac{a+b}{c}=\dfrac{a+c}{b}=\dfrac{b+c}{a}\)
=> \(\dfrac{a+b}{c}=\dfrac{a+c}{b}=\dfrac{b+c}{a}=\dfrac{a+b+a+c+b+c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
=> \(M=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{a+b}{c}\times\dfrac{a+c}{b}\times\dfrac{b+c}{a}=2.2.2=8\)
=> \(M=8\)
Bài 1:
Nếu $a+b+c=0$ thì đkđb thỏa mãn
$M=\frac{(-c)(-a)(-b)}{abc}=\frac{-(abc)}{abc}=-1$
Nếu $a+b+c\neq 0$. Áp dụng TCDTSBN:
$\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}=\frac{a+b-c+a+c-b+b+c-a}{c+b+a}=\frac{a+b+c}{a+b+c}=1$
$\Rightarrow a+b-c=c; a+c-b=b; b+c-a=a$
$\Leftrightarrow a+b=2c; a+c=2b; b+c=2a$
$\Rightarrow a=b=c$
$M=\frac{(a+a)(a+a)(a+a)}{aaa}=\frac{8a^3}{a^3}=8$
Bài 2a
Đặt $2x=3y=4z=t$
$\Rightarrow x=\frac{t}{2}; y=\frac{t}{3}; z=\frac{t}{4}$
Khi đó:
$|x+y+3z|=1$
$\Leftrightarrow |\frac{t}{2}+\frac{t}{3}+\frac{3t}{4}|=1$
$\Leftrightarrow |\frac{19}{12}t|=1$
$\Rightarrow t=\pm \frac{12}{19}$
Nếu $t=\frac{12}{19}$ thì:
$x=\frac{t}{2}=\frac{6}{19}; y=\frac{4}{19}; z=\frac{3}{19}$
Nếu $t=-\frac{12}{19}$ thì:
$x=\frac{t}{2}=\frac{-6}{19}; y=\frac{-4}{19}; z=\frac{-3}{19}$
Bài 1:
Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\Leftrightarrow M=\dfrac{-abc}{abc}=-1\)
Với \(a+b+c\ne0\Leftrightarrow\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\Leftrightarrow M=\dfrac{2a\cdot2b\cdot2c}{abc}=8\)
Bài 2:
\(a,TH_1:x+y+3z=1\\ \Leftrightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+3z}{6+4+9}=\dfrac{1}{19}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{6}{19}\\y=\dfrac{4}{19}\\z=\dfrac{3}{19}\end{matrix}\right.\\ TH_2:x+y+3z=-1\\ \Leftrightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+3z}{6+4+9}=\dfrac{-1}{19}\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{6}{19}\\y=-\dfrac{4}{19}\\z=-\dfrac{3}{19}\end{matrix}\right.\)
Bài 2:
\(b,\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+2y^2-3z^2}{4+18-48}=\dfrac{-650}{-26}=25\\ \Leftrightarrow\left\{{}\begin{matrix}x^2=100\\y^2=225\\z^2=400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=15\\z=20\end{matrix}\right.\)
Bài Đường Thẳng Song Song Với Một Đường Thẳng Cho Trước Nhé!