K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2017

help me

  • Toshiro Kiyoshi30GP
  • Nguyễn Đình Dũng19GP
  • Nguyễn Huy Thắng17GP
  • Nguyễn Thanh Hằng16GP
  • Nguyễn Thị Hồng Nhung15GP
  • Rồng Đỏ Bảo Lửa11GP
  • Mysterious Person10GP
  • Đời về cơ bản là buồn... cười!!!8GP
  • Huy Thắng Nguyễn8GP
  • Ánh Dương Hoàng Vũ6GP
9 tháng 9 2017

làm đc chưa,bảo t với........

30 tháng 11 2017

a/ Nó là cái gì mà không phải nhân tử b

b/ \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

c/ \(3\left(2x+y+z\right)\left(x+2y+z\right)\left(x+y+2z\right)\)

30 tháng 11 2017

trình bày từng ý một được ko?

22 tháng 12 2023

Bài 2:

1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)

=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)

=>(2x-1)(2x-5)=0

=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

2: \(9x^3-x=0\)

=>\(x\left(9x^2-1\right)=0\)

=>x(3x-1)(3x+1)=0

=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)

=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)

=>(2x-3)(2x-3-2)=0

=>(2x-3)(2x-5)=0

=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)

=>\(2x^2+10x-5x-25-10x+25=0\)

=>\(2x^2-5x=0\)

=>\(x\left(2x-5\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)

Bài 1:

1: \(3x^3y^2-6xy\)

\(=3xy\cdot x^2y-3xy\cdot2\)

\(=3xy\left(x^2y-2\right)\)

2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)

\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+3y-2\right)\)

3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)

\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)

\(=(x-2y)(3x-1+5x)\)

\(=\left(x-2y\right)\left(8x-1\right)\)

4: \(x^2-y^2-6y-9\)

\(=x^2-\left(y^2+6y+9\right)\)

\(=x^2-\left(y+3\right)^2\)

\(=\left(x-y-3\right)\left(x+y+3\right)\)

5: \(\left(3x-y\right)^2-4y^2\)

\(=\left(3x-y\right)^2-\left(2y\right)^2\)

\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)

\(=\left(3x-3y\right)\left(3x+y\right)\)

\(=3\left(x-y\right)\left(3x+y\right)\)

6: \(4x^2-9y^2-4x+1\)

\(=\left(4x^2-4x+1\right)-9y^2\)

\(=\left(2x-1\right)^2-\left(3y\right)^2\)

\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)

8: \(x^2y-xy^2-2x+2y\)

\(=xy\left(x-y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(xy-2\right)\)

9: \(x^2-y^2-2x+2y\)

\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-2\right)\)

7 tháng 7 2016

a)  \(\left(x+y\right)^5-x-y=\left(x+y\right)^5-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^4-1\right]\)

\(\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)     #áp dụng hàng đẳng thức#

c) \(x^9-x^7-x^6-x^5+x^4+x^3+x^2+1\)nhóm vào là đc

b) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(y^2+z^2\right)^3\)

=\(\left(y^2+x^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]+\left(y^2+z^2\right)^3\)

\(\left(y^2+z^2\right)\left[x^4+y^4+2x^2y^2-x^2z^2+x^4-y^2z^2+x^2y^2+z^4+x^4-2x^2z^2+y^4+z^4+2y^2z^2\right]\)

=\(=\left(y^2+z^2\right)\left(2x^4+2y^4+2z^4+3x^2y^2-3x^2z^2+y^2z^2\right)\)

7 tháng 7 2016

câu a ko phải -x-y mà là -x^5-y^5 bạn à

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Vì bài dài nên mình sẽ tách ra nhé.

1a. Ta có:

$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=-2(xy+yz+xz)$

$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=-3(x+y)(y+z)(x+z)$

$=-3(-z)(-x)(-y)=3xyz$

$\Rightarrow \text{VT}=-30xyz(xy+yz+xz)(1)$

------------------------

$x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)$

$=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2(x+y)$

$=(z^2-2xy)(-z^3+3xyz)+x^2y^2z$

$=-z^5+3xyz^3+2xyz^3-6x^2y^2z+x^2y^2z$

$=-z^5+5xyz^3-5x^2y^2z$

$\Rightarrow 6(x^5+y^5+z^5)=6(5xyz^3-5x^2y^2z)$

$=30xyz(z^2-xy)=30xyz[z(-x-y)-xy]=-30xyz(xy+yz+xz)(2)$

Từ $(1);(2)$ ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

1b.

$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$

$=(z^2-2xy)^2-2x^2y^2=z^4+2x^2y^2-4xyz^2$

$x^3+y^3=(x+y)^3-3xy(x+y)=-z^3+3xyz$

Do đó:

$x^7+y^7=(x^4+y^4)(x^3+y^3)-x^3y^3(x+y)$

$=(z^4+2x^2y^2-4xyz^2)(-z^3+3xyz)+x^3y^3z$

$=7x^3y^3z-14x^2y^2z^3+7xyz^5-z^7$

$\Rightarrow \text{VT}=7x^3y^3z-14x^2y^2z^3+7xyz^5$

$=7xyz(x^2y^2-2xyz^2+z^4)$

$=7xyz(xy-z^2)$

$=7xyz[xy+z(x+y)]^2=7xyz(xy+yz+xz)^2$

$=7xyz[x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)]$

$=7xyz(x^2y^2+y^2z^2+z^2x^2)$ (đpcm)

 

 

`a, 4a^2 + 4a + 1 = (2a+1)^2`

`b, -3x^2 + 6xy - 3y^2`

` = -3(x-y)^2`

`c, (x+y)^2 - 2(x+y)z + z^2`

`= (x+y-z)^2`

18 tháng 8 2016

bài này đặt ẩn đi nhìn hệ to quá cx ngại

18 tháng 8 2016

dung ham dac trung do'

17 tháng 8 2019

a) \(x^7+x^5+x^4+x^3+x^2+1\)

\(=\left(x^7+x^4\right)+\left(x^5+x^2\right)+\left(x^3+1\right)\)

\(=x^4\left(x^3+1\right)+x^2\left(x^3+1\right)+\left(x^3+1\right)\)

\(=\left(x^3+1\right)\left(x^4+x^2+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)

1 tháng 10 2017

a)\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\text{[}\left(b^3-c^3\right)+\left(a^3-b^3\right)\text{]}+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\left(b^3-c^3\right)-b\left(a^3-b^3\right)+c\left(a^3-b^3\right)\)

\(=\left(a-b\right)\left(b^3-c^3\right)-\left(b-c\right)\left(a^3-b^3\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)-\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(bc+c^2-a^2-ab\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)