Cho hàm số \(y=\left(2m^2-4m+7\right)x+3m^2-m-1\). Chứng minh hàm số luôn đồng biến R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để y đồng biến trên R thì
\(2m^2-4m+7>0\)
<=> \(2\left(m^2-2m+1\right)+5>0\)
<=> \(2\left(m-1\right)^2+5>0\)( Phương trình có ngiệm với mọi m)
Vậy hàm số luôn đồng biến trên R
\(2m^2-4m+7\)
\(=2m^2-4m+2+5\)
\(=2\left(m^2-2m+1\right)+5\)
\(=2\left(m-1\right)^2+5>=5>0\forall m\)
Do đó: Hàm số \(y=\left(2m^2-4m+7\right)x+3m^2-m-1\) luôn đồng biến trên R
\(y'=3x^2-2\left(m+1\right)x-\left(2m^2-3m+2\right)\)
\(\Delta'=\left(m+1\right)^2+3\left(2m^2-3m+2\right)=7\left(m^2+m+1\right)>0\) ; \(\forall m\)
\(\Rightarrow y'=0\) luôn có 2 nghiệm phân biệt
Bài toán thỏa mãn khi: \(x_1< x_2\le2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-\left(2m^2-3m+2\right)}{3}-\dfrac{4\left(m+1\right)}{3}+4\ge0\\\dfrac{2\left(m+1\right)}{3}< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2m^2-m+6\ge0\\m< 5\end{matrix}\right.\) \(\Leftrightarrow-2\le m\le\dfrac{3}{2}\)
Gia su \(x_1< x_2\)
\(\Rightarrow x_1-x_2< 0\left(1\right)\)
Ta co:
\(f\left(x_1\right)-f\left(x_2\right)=\left(3m^2-7m+5\right)x_1-2011-\left(3m^2-7m+5\right)x_2+2011=\left(x_1-x_2\right)\left(3m^2-7m+5\right)\)Vi la chung minh dong bien nen xet
\(3m^2-7m+5>0\)
Dat \(g\left(m\right)=3m^2-7m+5\)
Ta lai co:
\(\Delta=\left(-7\right)^2-4.3.5=-11< 0\)
Theo dinh li dau tam thuc bac hai thi \(g\left(m\right)\)cung dau voi he so 3
\(\Rightarrow3m^2-7m+5>0\left(2\right)\left(\forall m\right)\)
Tu \(\left(1\right)\)va \(\left(2\right)\)suy ra;
\(\left(x_1-x_2\right)\left(3m^2-7m+5\right)< 0\)
Ma \(f\left(x_1\right)-f\left(x_2\right)=\left(x_1-x_2\right)\left(3m^2-7m+5\right)\)
\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)
Vay ham so \(y=f\left(x\right)=\left(3m^2-7m+5\right)x-2011\)dong bien voi moi m
Hàm số có dạng y=ax+ b có :
a= m2+4m+5=(m2+4m+4)+1=(m+2)2+1 >0 với mọi m
Vậy hàm số là hàm số bậc nhất đồng biến
Do A là điểm cố định mà ĐTHS luôn đi qua nên: với mọi m ta luôn có:
\(y_0=\left(m^2+m\right)x_0^2-\left(3m^2+4m-2\right)x_0+2m^2\)
\(\Leftrightarrow m^2\left(x_0^2-3x_0+2\right)+m\left(x_0^2-4x_0\right)+2x_0-y_0=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0^2-3x_0+2=0\\x_0^2-4x_0=0\\2x_0-y_0=0\end{matrix}\right.\)
Hệ trên vô nghiệm nên ko tồn tại điểm cố định mà ĐTHS luôn đi qua
Ta có
m2 + m + 1 = (m2 + m + \(\frac{1}{4}\)) + \(\frac{3}{4}\)
= \(\frac{3}{4}+\left(m+\frac{1}{2}\right)^2>0\)
Hàm số này có hệ số a luôn luôn dương với mọi m nên hàm số đồng biến trên R với mọi m
Lời giải:
Xét \(x_1,x_2\in\mathbb{R}\), giả sử \(x_1< x_2\). Ta có:
\(f(x_1)-f(x_2)=(2m^2-2m+7)x_1+3m^2-m-1-[(2m^2-4m+7)x_2+3m^2-m-1]\)
\(\Leftrightarrow f(x_1)-f(x_2)=(2m^2-2m+7)(x_1-x_2)\)
Ta thấy \(2m^2-2m+7=m^2+(m-1)^2+6\geq 6>0\) với mọi \(m\in\mathbb{R}\), mà \(x_1< x_2\)
Do đó, \((2m^2-2m+7)(x_1-x_2)< 0\Leftrightarrow f(x_1)< f(x_2)\)
Như vậy, với \(x_1< x_2\Rightarrow f(x_1) < f(x_2)\), do đó hàm số đồng biến trên R