K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(Ta có: a+b+c=0 ⇔(a+b)^5=(−c)^5 ⇔a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5=−c5 \)

\(⇔a^5+b^5+c^5=−5ab(a^3+2a^2b+2ab^2+b^3)\)

\(⇔a^5+b^5+c^5=−5ab[(a+b)(a^2−ab+b^2)+2ab(a+b)]\)

\(⇔2(a^5+b^5+c^5)=5abc[a^2+b^2+(a^2+2ab+b^2)]\)

\(⇔2(a^5+b^5+c^5)=5abc(a^2+b^2+c^2)\)(đpcm)

4 tháng 9 2017

xem lại đề đi bạn :|

4 tháng 9 2017

thiếu :v

27 tháng 8 2021

Tùy bạn làm được câu nao thì làm nhưng mà  đừng làm tắt.

NV
27 tháng 8 2021

a. Đề bài sai (thực chất là nó đúng 1 cách hiển nhiên nhưng "dạng" thế này nó sai sai vì ko ai cho kiểu này cả)

Ta có: \(abc=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow abc\ge27\)

\(\Rightarrow a^2+b^2+c^2+5abc\ge a^2+b^2+c^2+5.27>>>>>8\)

b. 

\(4=ab+bc+ca+abc=ab+bc+ca+\sqrt{ab.bc.ca}\le ab+bc+ca+\sqrt{\left(\dfrac{ab+bc+ca}{3}\right)^3}\)

\(\sqrt{\dfrac{ab+bc+ca}{3}}=t\Rightarrow t^3+3t^2-4\ge0\Rightarrow\left(t-1\right)\left(t+2\right)^2\ge0\)

\(\Rightarrow t\ge1\Rightarrow ab+bc+ca\ge3\Rightarrow a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\ge3\)

- TH1: nếu \(a+b+c\ge4\)

Ta có: \(ab+bc+ca=4-abc\le4\)

\(\Rightarrow P=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+5abc\ge4^2-2.4+0=8\)

(Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;0\right)\) và các hoán vị)

- TH2: nếu \(3\le a+b+c< 4\)

Đặt \(a+b+c=p\ge3;ab+bc+ca=q;abc=r\)

\(P=p^2-2q+5r=p^2-2q+5\left(4-q\right)=p^2-7q+20\)

Áp dụng BĐT Schur:

\(4=q+r\ge q+\dfrac{p\left(4q-p^2\right)}{9}\Leftrightarrow q\le\dfrac{p^3+36}{4p+9}\)

\(\Rightarrow P\ge p^2-\dfrac{7\left(p^3+36\right)}{4p+9}+20=\dfrac{3\left(4-p\right)\left(p-3\right)\left(p+4\right)}{4p+9}+8\ge8\)

(Dấu "=" xảy ra khi \(a=b=c=1\))

NV
18 tháng 4 2021

Đặt \(A=a^5+b^5+c^5\)

\(A-\left(a+b+c\right)=a^5-a+b^5-b+c^5-c\)

Ta có: \(B=a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

Nếu \(a\) chia hết cho 5 \(\Rightarrow B\) chia hết cho 5

Nếu a chia 5 dư 1 hoặc -1 \(\Rightarrow\left(a-1\right)\left(a+1\right)\) chia hết chi 5 \(\Rightarrow\)B chia hết cho 5

Nếu a chia 5 dư 2 hoặc -2 \(\Rightarrow a^2+1\) chia 5 dư \(\left(\pm2\right)^2+1=5\Rightarrow a^2+1⋮5\Rightarrow B⋮5\)

Vậy \(B=a^5-a⋮5\) với mọi a nguyên

Hoàn toàn tương tự, \(b^5-b\) và \(c^5-c\) chia hết cho 5 với mọi b; c

\(\Rightarrow A-\left(a+b+c\right)⋮5\Rightarrow A⋮5\) (đpcm)

(Có thể ngắn gọn hơn là \(a^5\equiv a\left(mod5\right)\Rightarrow a^5-a⋮5\) ; \(\forall a\in Z\))

29 tháng 7 2021

khocroi

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

1. Đề sai với $a=1; b=0; c=-1$

2. Vì $a+b+c=0\Rightarrow a+b=-c$. Khi đó:

$a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc$ (đpcm)

3. Đề sai.

$a^5+b^5+c^5=(a^2+b^2)(a^3+b^3)-a^2b^2(a+b)+c^5$

$=[(a+b)^2-2ab][(a+b)^3-3ab(a+b)]-a^2b^2(-c)+c^5$

$=[(-c)^2-2ab][(-c)^3-3ab(-c)]+a^2b^2c+c^5$

$=(c^2-2ab)(3abc-c^3)+a^2b^2c+c^5$

$=3abc^3-c^5-6a^2b^2c+2abc^3+a^2b^2c+c^5$

$=3abc^3-6a^2b^2c+2abc^3+a^2b^2c$

$=abc(5c^2-5ab)=5abc(c^2-ab)$

2:Ta có: a+b+c=0

nên \(\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:

\(a^2+b^2+c^2=(a+b)^2-2ab+c^2=(-c)^2-2ab+c^2=2(c^2-2ab)\)

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc\)

Do đó: 

$2(a^2+b^2+c^2).3(a^3+b^3+c^3)=36abc(c^2-2ab)$

Mặt khác:
\(a^5+b^5+c^5=(a^2+b^2)(a^3+b^3)-a^2b^2(a+b)+c^5\)

\(=[(a+b)^2-2ab][(a+b)^3-3ab(a+b)]-a^2b^2(-c)+c^5\)

\(=(c^2-2ab)(-c^3+3abc)+a^2b^2c+c^5\)

\(=-c^5+3abc^3+2abc^3-6a^2b^2c+a^2b^2c+c^5\)

\(=5abc^3-5a^2b^2c=5abc(c^2-ab)\)

\(\Rightarrow 5(a^5+b^5+c^5)=25abc(c^2-ab)\)

Do đó 2 đẳng thức trên không bằng nhau.