tìm n biết 2.2^2+3.2^3+4.2^4+...+n.2^n=2^n+10 Ai giúp mình với mai mình đi học rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2.22 + 3.23 + 4.24 + ... + n.2n
2.A = 2.23 + 3.24 + 4.25 + ...+ n.2n+1
=> A - 2.A = 2.22 + (3.23 - 2.23) + (4.24 - 3.24) + ...+ (n - n + 1).2n - n.2n+1
=> A = 2.22 + 23 + 24 + ..+ 2n - n.2n+ 1 = 22 + (22 + 23 + ....+ 2n+ 1) - (n+1).2n+1
=> A = - 22 - (22 + 23 + ....+ 2n+ 1) + (n+1).2n+1
Tính B = 22 + 23 + ....+ 2n+ 1 => 2.B = 23 + ....+ 2n+ 1 + 2n+2 => 2B - B = 2n+2 - 22 => B = 2n+2 - 22
Vậy A = 22 - 2n+2 + 22 + (n+1).2n+1 = (n+1).2n+1 - 2n+ 2 = 2n+1.(n + 1 - 2) = (n-1).2n+1 = 2(n-1).2n
Theo bài cho A = 2(n-1).2n = 2n+10 => 2(n - 1) = 210 => n - 1 = 29 = 512 => n = 513
Vậy.............
Đặt \(A=2.2^2+3.2^3+4.2^4+5.2^5+...+n.2^n\)
\(\Rightarrow2A=2.2^3+3.2^4+4.2^5+5.2^6+...+n.2^{n+1}\)
\(\Rightarrow2A-A=2.2^3+3.2^4+4.2^5+5.2^6+...+n.2^{n+1}\)
\(-2.2^2-3.2^3-4.2^4-5.2^5-...-n.2^n\)
\(A=n.2^{n+1}-2^3-\left(2^3+2^4+...+2^n\right)\)
Đặt \(M=\left(2^3+2^4+...+2^n\right)\)
\(\Rightarrow2M=\left(2^4+2^5+...+2^{n+1}\right)\)
\(\Rightarrow M=2^{n+1}-2^3\)
\(\Rightarrow A=n.2^{n+1}-2^3-2^{n+1}+2^3\)
\(\Rightarrow A=\left(n-1\right)2^{n+1}=2^{n+10}\)
\(\Rightarrow\left(n-1\right)=2^9\)
\(\Rightarrow n=513\)
Đặt \(A=2.2^2+3.2^3+4.2^4+...+n.2^n=2^{n+10}\)
\(\Rightarrow2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)
\(\Rightarrow2A-A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}-2.2^2-3.2^3-4.2^4-...-n.2^n\)
\(\Leftrightarrow A=-2.2^2+\left(2.2^3-3.2^3\right)+\left(3.2^4-4.2^4\right)+...+[\left(n-1\right)2^n-n.2^n]+n.2^{n+1}\)
\(\Leftrightarrow A=-2.2^2-2^3-2^4-...-2^n+n.2^{n+1}\)
\(\Leftrightarrow A=-2^3-\left(2^4-2^3\right)-\left(2^5-2^4\right)-...-\left(2^{n+1}-2^n\right)+n.2^{n+1}\)
\(\Leftrightarrow A=-2^3-2^4+2^3-2^5+2^4-...-2^{n+1}+2^n+n.2^{n+1}\)
\(\Leftrightarrow A=-2^{n+1}+n.2^{n+1}\)
\(\Leftrightarrow A=2^{n+1}\left(n-1\right)\)
Mà \(A=2^{n+10}=2^{n+1}.2^9=2^{n+1}.512\)
\(\Rightarrow n-1=512\)
\(\Rightarrow n=513\)
Để tìm số tự nhiên n thoả mãn phương trình 2.2^2 + 3.2^3 + 3.2^4 + ... + n.2^n = 2^n + 11, chúng ta có thể thử từng giá trị của n cho đến khi phương trình được thỏa mãn.
Bắt đầu với n = 1: 2.2^2 = 2^2 + 11 8 = 4 + 11 8 = 15 Phương trình không thỏa mãn.
Tiếp tục với n = 2: 2.2^2 + 3.2^3 = 2^2 + 11 8 + 24 = 4 + 11 32 = 15 Phương trình không thỏa mãn.
Tiếp tục với n = 3: 2.2^2 + 3.2^3 + 3.2^4 = 2^3 + 11 8 + 24 + 48 = 8 + 11 80 = 19 Phương trình không thỏa mãn.
Tiếp tục với n = 4: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 = 2^4 + 11 8 + 24 + 48 + 64 = 16 + 11 144 = 27 Phương trình không thỏa mãn.
Tiếp tục với n = 5: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 = 2^5 + 11 8 + 24 + 48 + 64 + 160 = 32 + 11 304 = 43 Phương trình không thỏa mãn.
Tiếp tục với n = 6: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 = 2^6 + 11 8 + 24 + 48 + 64 + 160 + 384 = 64 + 11 688 = 75 Phương trình không thỏa mãn.
Tiếp tục với n = 7: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 + 7.2^7 = 2^7 + 11 8 + 24 + 48 + 64 + 160 + 384 + 896 = 128 + 11 2576 = 139 Phương trình không thỏa mãn.
Tiếp tục với n = 8: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 + 7.2^7 + 8.2^8 = 2^8 + 11 8 + 24 + 48 + 64 + 160 + 384 + 896 + 2048 = 256 + 11 4576 = 267 Phương trình không thỏa mãn.
Tiếp tục với n = 9: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 + 7.2^7 + 8.2^8 + 9.2^9 = 2^9 + 11 8 + 24 + 48 + 64 + 160 + 384 + 896 + 2048 + 4608 = 512 + 11 9600 = 523 Phương trình không thỏa mãn.
Tiếp tục với n = 10: 2.2^2 + 3.2^3 + 3.2^4 + 4.2^4 + 5.2^5 + 6.2^6 + 7.2^7 + 8.2^8 + 9.2^9 + 10.2^10 = 2^10 + 11 8 + 24 + 48 + 64 + 160 + 384 + 896 + 2048 + 4608 + 10240 = 1024 + 11 23840 = 1035 Phương trình không thỏa mãn.
Như vậy, sau khi thử tất cả các giá trị của n từ 1 đến 10, ta thấy không có số tự nhiên n nào thỏa mãn phương trình đã cho.