CMR:
\(\sin22^o30^'=\dfrac{\sqrt{2-\sqrt{2}}}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kết quả này sai rồi bạn, bạn có thể kiểm tra lại bằng máy tính.
A B C D
Dựng tam giác vuông cân ABC có \(AB=AC=1\); \(BC=\sqrt{2}\)
Dựng phân giác BD của góc B \(\Rightarrow\widehat{ABD}=\frac{45}{2}=22,5^0\)
Theo t/c phân giác: \(\frac{AD}{AB}=\frac{CD}{BC}\Rightarrow CD=\sqrt{2}AD\)
Mà \(AD+CD=AB\Rightarrow AD+\sqrt{2}AD=1\Rightarrow AD=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
\(BD=\sqrt{AB^2+BD^2}=\sqrt{1+\left(\sqrt{2}-1\right)^2}=\sqrt{4-2\sqrt{2}}\)
\(\Rightarrow sin22,5^0=sin\widehat{ABD}=\frac{AD}{BD}=\frac{\sqrt{2}-1}{\sqrt{4-2\sqrt{2}}}\)
\(A=\left(\dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}-\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right)\left(\dfrac{\sqrt{3}-1}{3\sqrt{2}-\sqrt{6}}\right)\)
\(=\dfrac{5+2\sqrt{6}-5+2\sqrt{6}}{-1}\cdot\dfrac{1}{\sqrt{6}}\)
=-4
Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+8\sqrt{x}-5-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\le0\)
\(\Leftrightarrow A\le\dfrac{2}{3}\)
\(P=\left(\dfrac{x-2+\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}\right)}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)