Chứng tỏ phân số sau tối giản
a, 12n + 1 / 30n + 2
b, 8n + 5 / 6n + 4 ( n thuộc N )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi ƯCLN(15n+1; 30n+1) là d. Ta có:
15n+1 chia hết cho d => 2(15n+1) chia hết cho d => 30n+2 chia hết cho d
30n+1 chia hết cho d
=> 30n+2-(30n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(15n+1; 30n+1) = 1
=> \(\frac{15n+1}{30n+1}\)tối giản (Đpcm)
Các phần sau tương tự
+Gọi d là ƯCLN(12n+1;30n+2)
+Ta có: (12n+1)<>d
(30n+2)<>d
> 5(12n+1)<>d
2(30n+2)<>D
> 60n+5<>d
60n+4<>d
> [(60n+5)-(60n+4)] <>d
> 1 <>d
> d thuộc {1}
Vậy 12n+1 trên 30+2 là phân số tối giản
Giả sử phân số \(\frac{12n+1}{30n+2}\) không tối giản
Đặt d là ƯCLN(12n+2;30n+2) nghĩa là nếu d=ƯCLN(12n+1;30n+2) thì d>1 (*)
Ta có:(12n+1) chia hết cho d;(30n+2) chia hết cho d
=>5.(12n+1)-2.(30n+2) chia hết cho d
=>60n+5-60n-4 chia hết cho d
=>1 chia hết cho d ,mâu thuẫn với (*)
do đó phân số \(\frac{12n+1}{30n+2}\) tối giản
Ta có: \(\frac{12n+1}{30n+2}\Rightarrow\frac{12+1}{30+2}=\frac{13}{32}\) mà \(\frac{13}{32}\) là phân số tối giản
Để 12n+1/30n+2 là phân số tối giản thì 12n+1 và 30n+2 phải có ƯCLN bằng 1
Gọi d là ƯCLN của 12n+1 và 30n+2
12n+1 chia hết cho d
30n+2 chia hết cho d
suy ra (30n+2 )-(12n+1) chia hết cho d
= 30n+2-12n-1 chia hết cho d
=(30n-12n) + (2-1)chia hết cho d
=8n+1
8n chia hết cho d , 1 chia hết cho d
suy ra n= 8n thì 12n+1/30n+2 la p/s tối giản
Bài tương tựGọi ước chung lớn nhất của 15n + 1 và 30n + 1 là d (d thuộc N*)
=> 15n + 1 chia hết cho d
30n + 1 chia hết cho d
=> 2(15n + 1) chia hết cho d
1(30n + 1) chia hết cho d
=> 30n + 2 chia hết cho d
30n + 1 chia hết cho d
=>(30n + 2) - (30n + 1) chia hết cho d
=> 1 chia hết cho d
Do d thuộc N*
=> d=1
=>Ước chung lớn nhất của 15n + 1 và 30n + 1 là 1
=> 15n +1 và 30n + 1 là 2 số nguyên tố cùng nhau
=>15n + 1/30n + 1 là phân số tối giản với n thuộc N (điều phải chứng minh)
Cho mình 5* pn nké.Hì.Thân.Chúc học giỏi
Đặt (12n+1,30n+20) = d Ta có:(12n+1) chia hết cho d và (30n+2) chia hết cho d suy ra 5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d suy ra 60n+5 chia hết cho d và 60n+4 chia hết cho d suy ra 1 chia hết cho d suy ra d=1 (vì n thuộc N nên d thuộc n)Vậy 12n+1/30n+2 là phân số tối giản
ta co:(12n+1) chia het cho d va (30n+2)chia het cho d
suy ra, 5(12n+1)chia het cho d va 2(30n+2) chia het cho d
suy ra,60n+5 chia het cho d va 60n+4 chia het chod
suy ra, 1 chia het cho d suy ra d=1(vi n thuoc N nen d thuocn)
Vay 12n+1/30n+2 la phan so toi gian
Ta có 12n+1=60n+5(1)
30n+2=60n+4(2)
Lấy (1)-(2)=60n+5-60n-4=1
ƯCLN(12n+1,30n+2)=1
Vậy Chứng tỏ rằng 12n+1/30n+2 là phân số tối giản
Chứng tỏ rằng 12n+1/30n+2 là ps tối giản. ... Để chứng minh 12n+1/30n+2 là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau. Gọi ƯCLN(12n+1,30n+2)=d (d∈N). => 12n+1 chia hết ... Ngô Hoài Nam , có 60n + 5 khi ta nhân 12n + 1 với 5 . ... 12 n +130 n +2 là PS tối giản (n thuộc N).
Giả sử cả 12n+1 và 30n+2 đều chia hết cho d
=> 12n+1 chia hết cho d và 30n+2 chia hết cho d
=> 5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d
=> 60n+5 chia hết cho d và 60n+4 chia hết cho d
=> 60n+5-60n-4 chia hết cho d
<=> 1 chia hết cho d
=> d=1
Vậy \(\frac{12n+1}{30n+2}\)là tối giản với mọi n thuộc N
giả sử cả 12n+1 và 30n +2 đều chia hết cho d
\(\Rightarrow\)5(12n+1)\(⋮\)cho d và 2(30n+2) \(⋮\)cho d
\(\Rightarrow\)60n+5 \(⋮\)cho d và 60n+4 \(⋮\)cho d\(\Leftrightarrow\)60n+5-(60n+4)=60n+5-60n-4=1
\(\Rightarrow\)d=1
Vậy \(\frac{12n+1}{30n+2}\)đã tối giản với mọi n thuộc N
nhớ tích và chọn câu trả lời của mình nha~~~~~~hocj toots
Giải:
*Để \(\frac{12n+1}{30n+2}\)là phân số tối giản thì 12n+1 và 30n+2 là hai số nguyên tố cùng nhau và ƯCLN (12n+ 1; 30n+ 2)=1
* Gọi d = ƯCLN (12n+1; 30n+2)
Ta có:
* 12n+1 chia hết cho d =>5.(12n+1) chia hết cho d
hay 60n+5 chia hết cho d
*30n+2 chia hết cho d =>2.( 30n+2) chia hết cho d
hay 60n +4 chia hết cho d
Do đó: (60n+ 5- 60n+4) chia hết cho d
hay 1 chia hết cho d
=> d =1
Vậy ƯCLN (12n+1; 30n+2)= 1
Vậy ƯCLN (12n+1; 30n+2)= 1
Do đó: \(\frac{12n+1}{30n+2}\text{là phân số tối giản}\)
a) \(\dfrac{12n+1}{30n+2}\)
Đặt \(ƯCLN\left(12n+1;30n+2\right)=d\)
\(\Leftrightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy phân số \(\dfrac{12n+1}{30n+2}\) tối giản.
b) \(\dfrac{8n+5}{6n+4}\left(n\in N\right)\)
Đặt \(ƯCLN\left(8n+5;6n+4\right)=d\)
\(\Leftrightarrow\left\{{}\begin{matrix}8n+5⋮d\\6n+4⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\left(8n+5\right)⋮d\\4\left(6n+4\right)⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}24n+15⋮d\\24n+16⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left(24n+15\right)-\left(24n+16\right)⋮d\)
\(\Leftrightarrow-1⋮d\)
\(\Leftrightarrow d=\left\{-1;1\right\}\)
Vậy phân số \(\dfrac{8n+5}{6n+4}\) tối giản với mọi \(n\in N\)
a,Gọi d là UCLN(12n+1;30n+2) ta có: 12n+1 \(⋮\) d và 30n+2 \(⋮\) d \(\Leftrightarrow\) 5(12n+1) \(⋮\) d và 2(30n+2) \(⋮\) d \(\Leftrightarrow\) 60n+5\(⋮\) d và 60n+4 \(⋮\) d \(\Leftrightarrow\) (60n+5)-(60n+4) \(⋮\) d \(\Rightarrow\) 1\(⋮\) d \(\Rightarrow\) d=1 Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản b, Gọi a là UCLN(8n+5;6n+4) ta có: 8n+5\(⋮\) a và 6n+4 \(⋮\) a \(\Leftrightarrow\) 3(8n+5)\(⋮\) a và 4(6n+4)\(⋮\)a 4(6n+4)-3(8n+5)\(⋮\) a\(\Rightarrow\) 1\(⋮\)a\(\Rightarrow a=1\) \(\Rightarrow\dfrac{8n+5}{6n+4}\) là phân số tối giản