giai phuong trinh
(x-3)3-(x-3)(x2+3x+9)+y(x+1)=15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x=-10\)
\(\Leftrightarrow x=-\dfrac{5}{12}\)
Vậy:....
\(b,\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25^2+9=30\)
\(\Leftrightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy :....
\(c,\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)\(\Leftrightarrow x^3+27-x\left(x^2-4\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=15-27=-12\)
\(\Leftrightarrow x=-3\)
vậy : .....
Ta có:
\(x^3+5x^2+3x-9=0\)
\(\Leftrightarrow x^3+3x^2+2x^2+6x-3x-9=0\)
\(\Leftrightarrow x^2\left(x+3\right)+2x\left(x+3\right)-3\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x+3\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy PT có nghiệm là \(\left\{1;-3\right\}\)
2( x - 1 ) - 5 = 3( 5 - 3x)
2x - 2 - 5 = 15 - 9x
2x - 7 = 15 - 9x
2x + 9x = 15 + 7
11x = 22
x = 2
Vậy x = 2
\(2\left(x-1\right)-5=3\left(5-3x\right)\)
\(\Leftrightarrow2x-2-5=15-9x\)
\(\Leftrightarrow2x-\left(2+5\right)=15-9x\)
\(\Leftrightarrow2x-7=15-9x\)
\(\Leftrightarrow2x+9x=15+7\)
\(\Leftrightarrow11x=22\)
\(\Leftrightarrow x=22\div11\)
\(\Leftrightarrow x=2\)
\(\text{Vậy }x=2\)
Pt tương đương:
\(\sqrt[3]{4x-3}\)-\(\sqrt[3]{3x+1}\)=\(\sqrt[3]{5-x}\)+\(\sqrt[3]{2x-9}\)
\(\Leftrightarrow\)-3\(\sqrt[3]{\text{(4x-3)(3x+1)}}\)(\(\sqrt[3]{4x-3}\)-\(\sqrt[3]{3x+1}\))=3\(\sqrt[3]{\left(5-x\right)\left(2x-9\right)}\)(\(\sqrt[3]{5-x}\)+\(\sqrt[3]{2x-9}\))
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt[3]{4x-3}-\sqrt[3]{3x+1}=\sqrt[3]{5-x}+\sqrt[3]{2x-9}=0\left(1\right)\\3\sqrt[3]{-12x^2+5x+3}=3\sqrt[3]{-2x^2+19x-45}\left(2\right)\end{cases}}\)
(1)<=>4x-3=3x+1 và x-5=2x-9<=>x=4
(2)<=>-12x2+5x+3=-2x2+19x-45<=>-5x2-7x+24=0<=>x=8/5 và x=-3
bạn thử các giá trị x=4,x=8/5 và x=-3 vào pt và kết luận
mik ko hieu vi sao ban suy ra duoc (1) va (2)
bn co the viet ro ra duoc ko ?
theo mik thay thi 2 pt do dau co tuong duong
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15=0\)\(Dat:x^2+8x+7=a\Rightarrow a\left(a+8\right)+15=0\Leftrightarrow a^2+8a+15=0\Leftrightarrow\left(a+3\right)\left(a+5\right)=0\Leftrightarrow\left[{}\begin{matrix}a=-3\\a=-5\end{matrix}\right.\)\(+,a=-5\Rightarrow x^2+8x+7=-5\Leftrightarrow x^2+8x+16=4\Leftrightarrow\left(x+4\right)^2=4\Rightarrow\left[{}\begin{matrix}x+4=-2\\x+4=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\left(thoaman\right)\\x=2\left(loai\right)\end{matrix}\right.\)\(+,a=-3\Rightarrow x^2+8x+7=-3\Leftrightarrow x^2+8x+16=6\Leftrightarrow\left(x+4\right)^2=6\Leftrightarrow\left[{}\begin{matrix}x+4=-\sqrt{6}\\x+4=\sqrt{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\left(\sqrt{6}+4\right)\left(thoaman\right)\\x=\sqrt{6}-4\left(thoaman\right)\end{matrix}\right.\) \(\Rightarrow x\in\left\{\sqrt{6}-4;-\sqrt{6}-4;-6\right\}\)
\(x^3-y^3=9< =>\left(x-y\right)^3+3xy\left(x-y\right)=9< =>3^3+3.xy.3=9< =>\)xy=-2
x-y =3 <=> x= y+ 3 => y(y+3) = -2 <=> y2 +3y +2 =0 <=> y= -1; x= y+3 = 2 hoặc y = -2; x= 1
vậy hệ có 2 nghiệm (x;y) = (2; -1); (1; -2)
chỗ y(x+1) sữa thành 9(x+1) nha
giúp mình vs nha