K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

=> 4(10x+y) =4xy= 4(x2-1)+ 4(y2-1). Khai triển chuyển vế và nộp lại ta có: (2x-12)2+ (2y-3)2 =145=122 + 12=82+ 92

Ta có: -10=(2.1-12)<=(2x-12)<=(2.9-12)=7

-3=(2.0-3)<=(2y-3)<=(2.9-3)=15

=> 2x-12=-8=> 2y-3=9=> x=2 và y=6=> xy=26

18 tháng 8 2017

\(\overline{xy}=\left(x-1\right)^2+\left(y-1\right)^2\)

\(4\overline{xy}=4\left[\left(x-1\right)^2+\left(y-1\right)^2\right]\)

\(4\left(10x+y\right)=4\left(x^2-2x+1\right)+4\left(y^2-2y+1\right)\)

\(40x+4y-4x^2+8x-4-4y^2+8y-4=0\)

\(4x^2-48x+144+4y^2-12y+9=145\)

\(\left(2x-12\right)^2+\left(2y-3\right)^2=12^2+1^2=8^2+9^2\)

Xét các TH:

\(\left\{{}\begin{matrix}\left|2x-12\right|=12\\\left|2y-3\right|=1\end{matrix}\right.\)(giải thì hệ này không thỏa mãn điều kiện)

\(\left\{{}\begin{matrix}\left|2x-12\right|=1\\\left|2y-3\right|=12\end{matrix}\right.\)(Hệ này cũng không thỏa mãn điều kiện)

\(\left\{{}\begin{matrix}\left|2x-12\right|=8\\\left|2y-3\right|=9\end{matrix}\right.\)( Nhận nghiệm x=2;y=6)

\(\left\{{}\begin{matrix}\left|2x-12\right|=9\\\left|2y-3\right|=8\end{matrix}\right.\)(Hệ này không thỏa mãn điều kiện)

Vậy\(\overline{xy}=26\)

1 tháng 12 2017

\(2\overline{xy}=\left(x+2\right)^2+\left(y+4\right)^2\)

☘ Điều kiện: \(\left\{{}\begin{matrix}x;y\in Z^+\\1\le x\le9\\0\le y\le9\end{matrix}\right.\)

\(\Leftrightarrow\left(x^2+4x+4\right)+\left(y^2+8y+16\right)=2\left(10x+y\right)\)

\(\Leftrightarrow x^2-16x+y^2+6y+20=0\)

\(\Leftrightarrow\left(x^2-16x+64\right)+\left(y^2+6x+9\right)-53=0\)

\(\Leftrightarrow\left(x-8\right)^2+\left(y+3\right)^2=53\)

Nhận xét:

\(53=2^2+7^2=7^2+2^2\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left|x-8\right|=2\\\left|y+3\right|=7\end{matrix}\right.\\\left\{{}\begin{matrix}\left|x-8\right|=7\\\left|y+3\right|=2\end{matrix}\right.\end{matrix}\right.\)

☘ Theo điều kiện \(1\le y\)

\(\Leftrightarrow4\le y+3\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x-8\right|=2\\\left|y+3\right|=7\end{matrix}\right.\)

⚠ Làm tiếp nhé.

11 tháng 5 2022

\(\overline{xy}=10.x+y\) Khi đó \(\dfrac{\overline{xy}}{x+y}=\dfrac{10x+y}{x+y}\)

Mặt khác \(\dfrac{10x+y}{x+y}=\dfrac{100x+10y}{10\left(x+y\right)}=\dfrac{19\left(x+y\right)+81x-9y}{10\left(x+y\right)}=\dfrac{19}{10}+\dfrac{9\left(9x-y\right)}{10\left(x+y\right)}\ge\dfrac{19}{10}\)

Do đó, \(\dfrac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất bằng \(\dfrac{19}{10}\) khi \(9x-y=0\) hay \(x=1,y=9\)

Vậy số cần tìm là 19

1)Giải hệ phương trình với \(x,y,z\in R\)\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)   2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tốa)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn...
Đọc tiếp

1)Giải hệ phương trình với \(x,y,z\in R\)

\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)   

2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tố

a)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)

b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)

3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn :

\(f\left(x^2\right)=f\left(x+y\right).f\left(x-y\right)+y^2,\forall x,y\in R\)

4)Cho đường tròn \(\left(I,r\right)\) nội tiếp \(\Delta ABC\).\(M\in\) đoạn \(BC\)\(\left(M\ne B,C\right)\).Gọi \(\left(I_1,r_1\right)\)là đường tròn nội tiếp \(\Delta AMC\).Đường thẳng song song \(BC\) tiếp xúc \(\left(I_1,r_1\right)\) cắt các cạnh \(AB,AC\) tại \(X,Y\).\(AM\) cắt \(XY\) tại \(N\).Gọi \(\left(I_2,r_2\right)\) là đường tròn nội tiếp \(\Delta AXN\).Chứng minh:

a)\(A,I,I_1,I_2\) cùng thuộc 1 đường tròn

b)\(r=r_1+r_2\)

0
26 tháng 11 2021

1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học

2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365

 

25 tháng 12 2017

Ta có: \(2\overline{xy}=\left(x+2\right)^2+\left(y+4\right)^2\)

\(\Leftrightarrow2\left(10x+y\right)=x^2+4x+4+y^2+8y+16\)

\(\Leftrightarrow x^2-16x+y^2+6y+20=0\)

\(\Leftrightarrow\left(x-8\right)^2+\left(y+3\right)^2=53\)

Ta thấy do x, y là các chữ số nên (x - 8)2 và (y + 3)2 đều là các số chính phương.

Ta có 53 = 49 + 4 và \(y+3\ge3\)

Vậy nên \(\hept{\begin{cases}x-8=2\\y+3=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=10\\y=4\end{cases}}\left(ktmđk\right)\)

Vậy không tồn tại số cần tìm.

Bài 1: Lãi suất của tiền gửi tiết kiệm của một ngân hàng thời gian vừa qua liên tục thay đổi. Bạn Châu gửi số tiền ban đầu là 5 triệu đồng với lãi suất 0,7%/ tháng chưa đầy một năm thì lãi suất tăng lên 1,15%/tháng trong nửa năm tiếp theo và bạn Châu tiếp tục gửi them một số tháng tròn nữa, khi rút tiền bạn Châu được cả vốn lẫn lãi là 5,747,478, 359 đồng (Chưa làm tròn). Hỏi...
Đọc tiếp

Bài 1: Lãi suất của tiền gửi tiết kiệm của một ngân hàng thời gian vừa qua liên tục thay đổi. Bạn Châu gửi số tiền ban đầu là 5 triệu đồng với lãi suất 0,7%/ tháng chưa đầy một năm thì lãi suất tăng lên 1,15%/tháng trong nửa năm tiếp theo và bạn Châu tiếp tục gửi them một số tháng tròn nữa, khi rút tiền bạn Châu được cả vốn lẫn lãi là 5,747,478, 359 đồng (Chưa làm tròn). Hỏi bạn Chau đã gửi tiền tiết kiệm trong bao nhiêu tháng?

Bài 2: Tìm các số  \(\overline{aabb}\) sao cho  \(\overline{aabb}=\overline{\left(a-1\right)\left(a-1\right)}.\overline{\left(b-1\right)\left(b-1\right)}\).

Bài 3: Tìm số nguyên dương nhỏ nhất có ba chữ số \(\overline{abc}\) sao cho  \(\overline{abc}=a^3+b^3+c^3\).Còn số nguyên dương nào thỏa mãn điều kiện trên nữa không?

Bài 4: Tính: \(S=\dfrac{1}{2.3}-\dfrac{2}{3.4}+...+\dfrac{99}{100.101}-\dfrac{100}{101.102}\)

Bài 5: Xác định các hệ số a, b, c của đa thức: \(P\left(x\right)=a.x^3+b.x^2+c.x-2007\) để sao cho P(x) chia cho x -16 có số dư là 29938 và chia cho \(x^2-10x+21\) có đa thức số dư là  \(\dfrac{10873}{16}x-3750.\)

GIÚP MK VỚI NHÉ MN!!!!

1
25 tháng 7 2017

2. Tìm số tự nhiên aabb biết: $\overline{aabb}=\overline{(a+1)(a+1)}.\overline{(b-1)(b-1)}$ - Số học - Diễn đàn Toán học

4. Bấm tổng sigma Shift + log

x = 1

cái số ở trên là 100

trong ngoặc là  \(\left(\frac{X\left(-1\right)^{X+1}}{\left(X+1\right)\left(X+2\right)}\right)\)

kết quả: 0.07461166509

4 tháng 2 2017

Bài 2 :

a) \(10\le\overline{a_7a_8}\le31\) để \(100\le\left(\overline{a_7a_8}\right)^2\le999\) là số có ba chữ số.

Với mỗi số trong khoảng \(\left\{10;11;12;...;31\right\}\) ta lại có một số \(\overline{a_1a_2a_3}\) khác nhau; còn a4; a5; a6 tùy ý.

b) Trước hết : \(23\le\overline{a_7a_8}\le46\)

Trước hết để a7a8 khi lập phương lên sẽ vẫn có chữ số tận cùng ban đầu thì \(a_8\in\left\{0;1;4;5;6;9\right\}\)

Giả sử a8 = 0 thì số a4a5a6a7a8 chia hết cho 103 = 1000; hay a7 phải bằng 0; loại.

Nếu a8 = 1 thì xét \(23\le\overline{a_7a_8}\le46\) có số 31 không thỏa mãn.

Tương tự xét các trường hợp còn lại khi đã có giới hạn \(23\le\overline{a_7a_8}\le46\).

4 tháng 2 2017

Bài 1 :

Không đủ dữ kiện.

Ngộ nhỡ m = n = 2 thì điều phải chứng minh là sai.

22 tháng 1 2022

\(\overline{xy}=10.x+y\) . Khi đó, \(\frac{\overline{xy}}{x+y}=\frac{10x+y}{x+y}\)

Mặt khác, \(\frac{10x+y}{x+y}=\frac{100x+10y}{10\left(x+y\right)}=\frac{19\left(x+y\right)+81-9y}{10\left(x+y\right)}=\frac{19}{10}+\frac{9\left(9x-y\right)}{10\left(x+y\right)}\ge\frac{19}{10}\)

Do đó, \(\frac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất \(\frac{19}{10}\) khi \(9x-y=0\) , hay x = 1, y = 9.

Vậy số cần tìm là 19

22 tháng 1 2022

MÌNH KO HIÊU