Cho A = (22014 + 52014)2015 và B = (22015 + 52015)2014 Hãy so sánh A và B ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)
\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)
Nên suy ra \(10A>10B\Rightarrow A>B\)
\(A=1+2+2^2+...+2^{2015}>2^{2015}=B\)
\(\Rightarrow A>B\)
P.s: đề sai đúng ko bạn :v
Bạn à, đây không phải là toán lớp 5 nên mình không giải được nên bạn thông cảm nha!
so sánh: \(A=\frac{2014}{2015}+\frac{2015}{2016}\) và \(B=\frac{2014+2015}{2015+2016}\)
\(\Rightarrow B=\frac{2014}{2015+2016}+\frac{2015}{2015+2016}\)
Ta có: \(\frac{2014}{2015}>\frac{2014}{2015+2016}\) vì \(2015<2015+2016\)
\(\frac{2015}{2016}>\frac{2015}{2015+2016}\) vì \(2016<2015+2016\)
\(\Rightarrow\frac{2014}{2015}+\frac{2015}{2016}>\frac{2014}{2015+2016}+\frac{2015}{2015+2016}\)
\(\Rightarrow\frac{2014}{2015}+\frac{2015}{2016}>\frac{2014+2015}{2015+2016}\)
Vậy: \(A>B\)
a)
Ta có:
1030=(103)10=100010
2100=(210)10=102410
Vì 100010<102410
⇒1030<2100 (1)
Ta có:
2100=231.269=231.263.26=231(29)7.64=231.5127.64
1031=231.531=231.528.53=231.(54)7.125=231.6257.125
Vì 231.5127.64<231.6257.125
⇒2100<1031 (2)
Từ (1) và (2)⇒1030<2100<1031
Vậy 2100 có 31 chữ số
\(A=2^{2014.2015}.5^{2014.2015}\)
\(B=2^{2015.2014}.5^{2015.2014}\)
Vậy A = B
Haha , Việt làm sai đâu phải nhân đâu