K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

c: Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

Do đó: ΔDBC=ΔECB

=>\(\widehat{DCB}=\widehat{EBC}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

7 tháng 1

chưa hiểu phần song song

 

18 tháng 12 2021

cứu emm

 

7 tháng 1 2022

Còn cái nịt

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: DB+AD=AB

EC+AE=AC

mà AD=AE

và AB=AC

nên DB=EC

Xét ΔDBM và ΔECM có

DB=EC

\(\widehat{B}=\widehat{C}\)

MB=MC

Do đó: ΔDBM=ΔECM

Suy ra: MD=ME

Ta có: AD=AE

nên A nằm trên đường trung trực của DE(1)

ta có: MD=ME

nên M nằm trên đường trung trực của DE(2)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(3)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(4)

Từ (1) và (2) suy ra AM là đường trung trực của DE

hay AM\(\perp\)DE

Từ (3) và (4) suy ra AM là đường trung trực của BC

hay AM\(\perp\)BC

Sửa đề: Cho tam giác ABC cân tại A

a: XétΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

mà tia AM nằm giữa hai tia AB,AC

nên AM là phân giác của góc BAC

Ta có:ΔABM=ΔACM

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC tại M

c:

Ta có: AM\(\perp\)BC tại M(cmt)

mà D\(\in\)AM

nên DM\(\perp\)BC

Xét ΔDBC có

DM là đường cao

DM là đường trung tuyến(M là trung điểm của BC)

Do đó: ΔDBC cân tại D

=>DB=DC

d: AH+HB=AB

AK+KC=AC

mà HB=KC

và AB=AC

nên AH=AK

Xét ΔABC có \(\dfrac{AH}{AB}=\dfrac{AK}{AC}\)

nên HK//BC

10 tháng 5 2022

mình chỉ giúp ý d theo mong muốn của bạn thôi :)

Có : AH = AK ( cái này bạn chứng minh ở câu  trên chưa mình không biết; nếu chưa thì bạn chứng minh đi nhé )

=> A thuộc đường trung trực của HK

và MH=MK

=> M thuộc đường trung trực của HK

=> AM là đường trung tực của HK

=> AM ⊥ HK

24 tháng 12 2023

Cho △ABC có AB = AC, AM là phân giác của ∠BAC (M ∈ BC):

a, Chứng minh △ABM = △ACM.

b, Chứng minh M là trung điểm của BC và AM ⊥ BC.

c, Kẻ MF ⊥ AB (F ∈ AB) và ME ⊥ AC (E ∈ AC). Chứng minh EF // BC.

Giải:

a,

- Xét 2 △ABM và △ACM, có:

     AB = AC (theo giả thiết)

     ∠CAM = ∠BAM (AM là phân giác của ∠BAC)

     AM_cạnh chung

=> △ABM = △ACM (c.g.c)

b,

- Có △ABM = △ACM (chứng minh trên)

=> MC = MB (2 cạnh tương ứng)

=> M là trung điểm của BC

=> ∠AMC = ∠AMB (2 góc tương ứng)

     mà 2 ∠AMC và ∠AMB kề bù

=> ∠AMC = ∠AMB = \(\dfrac{180^o}{2}\) = 90o

<=> AM ⊥ BC

c,

- Xét 2 △AEM và △AFM, có:

     ∠AEM = ∠AFM = 90o

     AM_cạnh chung

     ∠EAM = ∠FAM (AM là phân giác của ∠EAF)

=> △AEM = △AFM (cạnh huyền - góc nhọn)

=> AE = AF (2 cạnh tương ứng)

<=> △AEF cân tại A 

=> ∠AEF = \(\dfrac{180^o-\text{∠}EAF}{2}\) (số đo của một góc ở đáy trong △AEF cân tại A) (1)

Có △ABC cân tại A (AB = AC)

=> ∠ACB = \(\dfrac{180^o-\text{∠}BAC}{2}\) (số đo của một góc ở đáy trong ΔABC cân tại A) (2)

Từ (1) và (2) suy ra ∠AEF = ∠ACB

     mà ∠AEF và ∠ACB ở vị trí đồng vị

=> EF//BC

a: Xét ΔABM và ΔACM có

AM chung

AB=AC

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên  AM là đường cao

c: Xét tứ giác ABDC có 

M là trung điểm của BC

M la trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

9 tháng 1 2022

Cảm ơn bạn nhìu nha yeu