K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)\(\)

\(=1+y^2+x^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)

 \(=x^2+2xy+y^2+x^2y^2+2xy+1+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x+y\right)^2+\left(xy+1\right)^2+2\left(x+y\right)\left(xy+1\right)\)

\(=\left(x+y+xy+1\right)^2\)

23 tháng 2 2021

1. \(\left\{{}\begin{matrix}3x^2+y^2+4xy=8\left(1\right)\\\left(x+y\right)\left(x^2+xy+2\right)=8\end{matrix}\right.\)

=> \(3x^2+3xy+xy+y^2=\left(x+y\right)\left(x^2+xy+2\right)\)

<=> \(\left(x+y\right)\left(3x+y\right)=\left(x+y\right)\left(x^2+xy+2\right)=0\)

<=> \(\left(x+y\right)\left(x^2+xy+2-3x-y\right)=0\)

<=> \(\left[{}\begin{matrix}x=-y\\x^2+xy+2-3x-y=0\end{matrix}\right.\)

TH1: x = -y thay vào pt (1), ta được:

3y2 + y2 - 4y2 = 8

<=> 0y = 8 (vô lí)

TH2: \(x^2+xy+2-3x-y=0\)

<=> x (x + y) - (x + y) - 2(x - 1) = 0

<=> (x - 1)(x + y) - 2(X - 1) = 0

<=> (x - 1)(x + y - 2) = 0

<=> \(\left[{}\begin{matrix}x=1\\x+y-2=0\end{matrix}\right.\)

Với x =  1 thay vào pt (1) -> 3 + y2 + 4y = 8

<=> y2 + 4y - 5 = 0 <=> (y + 5)(y - 1) = 0

<=> \(\left[{}\begin{matrix}y=-5\\y=1\end{matrix}\right.\)

Với x + y - 2 = 0 => x = 2 - y thay vào pt (1)

=> 3(2 - y)2 + y2 + 4(2 - y)y = 8

<=> 3y2 - 12y + 12 + y2 + 8 - 4y2 = 8

<=> 12 = 12y <=> y= 1 => x = 2 - 1 = 1

Vậy ....

2 tháng 8 2023

Ta có \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

\(=\left(x^2+5xy+5y^2-y^2\right)\left(x^2+5xy+5y^2+y^2\right)+y^4\)

\(=\left(x^2+5xy+5y^2\right)^2\) là số chính phương. \(\Rightarrowđpcm\)