Cho \(x\ge1,y\ge1.\)Chứng minh \(x\sqrt{y-1}+y\sqrt{x-1}\le xy\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Liên Mỹ - Toán lớp 9 - Học toán với OnlineMath
Áp dụng bất đẳng thức Cô si ta có
\(\sqrt{y-1}=\sqrt{\left(y-1\right).1}\le\frac{y-1+1}{2}=\frac{y}{2}\)
=>\(x\sqrt{y-1}\le\frac{xy}{2}\)
Áp dụng BĐT cô si ta có
\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)
=>\(y\sqrt{x-1}+x\sqrt{y-1}\le\frac{xy}{2}+\frac{xy}{2}=xy\)
Dấu ''='' xảy ra <=>x=y=1
Lời giải:
Áp dụng BĐT Bunhiacopxky ta có:
$(x\sqrt{y-1}+y\sqrt{x-1})^2=(\sqrt{x}.\sqrt{xy-x}+\sqrt{y}.\sqrt{yx-y})^2$
$\leq (x+y)(xy-x+xy-y)\leq \left(\frac{x+y+xy-x+xy-y}{2}\right)^2=(xy)^2$
$\Rightarrow x\sqrt{y-1}+y\sqrt{x-1}\leq xy$ (đpcm)
Dấu "=" xảy ra khi $x=y=2$
\(x.1.\sqrt{y-1}+y.1.\sqrt{x-1}\le\frac{x}{2}\left(1+y-1\right)+\frac{y}{2}\left(1+x-1\right)=xy\)
Dấu "=" xảy ra khi \(x=y=2\)
Áp dụng bđt Cauchy : \(\sqrt{\left(y-1\right).1}\le\frac{y-1+1}{2}=\frac{y}{2}\Rightarrow x\sqrt{y-1}\le\frac{xy}{2}\)
\(\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\Rightarrow y\sqrt{x-1}\le\frac{xy}{2}\)
Cộng hai BĐT trên theo vế ta có đpcm
Đặt vế trái của BĐT cần chứng minh là P
Ta có:
\(P=\dfrac{\sqrt{xy+\left(x+y+z\right)z}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}=\dfrac{\sqrt{\left(x+z\right)\left(y+z\right)}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}\)
\(P\ge\dfrac{\sqrt{\left(\sqrt{xy}+z\right)^2}+\sqrt{\left(x+y\right)^2}}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+x+y+z}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+1}{1+\sqrt{xy}}=1\) (đpcm)
Dấu "=" xảy ra khi \(x=y\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(A^2=(x\sqrt{y-1}+y\sqrt{x-1})^2=(\sqrt{x}\sqrt{xy-x}+\sqrt{y}\sqrt{xy-y})^2\)
\(\leq (x+y)(xy-x+xy-y)=(x+y)(2xy-x-y)\)
Áp dụng BĐT AM-GM:
\((x+y)(2xy-x-y)\leq \left (\frac{x+y+2xy-x-y}{2}\right)^2=(xy)^2\)
Do đó, \(A^2\leq (xy)^2\Leftrightarrow A\leq xy\) (đpcm)
Dấu bằng xảy ra khi \(x=y=2\)