K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

ta có : \(VP=x^3+3x^2+2x=x\left(x^2+3x+2\right)=x\left(x^2+x+2x+2\right)\)

\(=x\left(x\left(x+1\right)+2\left(x+1\right)\right)=x\left(x+2\right)\left(x+1\right)=VT\)

vậy \(x\left(x+1\right)\left(x+2\right)=x^3+3x^2+2x\) (đpcm)

16 tháng 8 2017

Ta có \(VT\) :

\(x\left(x+1\right)\left(x+2\right)=x^3+2x^2+x^2+2x=x^3+3x^2+2x=VP\)

\(\Rightarrowđpcm\)

13 tháng 8 2016

cho ba số tự nhiên liên tiếp, tích của hai số đầu nhỏ hơn tích của hai số sau là 50. Hỏi ba số đã cho là số nào?

13 tháng 8 2016

chứng minh:

\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) luôn chia hết cho 6 với mọi n

1: \(P=\left(\dfrac{2x}{x^2-9}-\dfrac{1}{x+3}\right):\left(\dfrac{2}{x}-\dfrac{x-1}{x^2-3x}\right)\)

\(=\left(\dfrac{2x}{\left(x-3\right)\left(x+3\right)}-\dfrac{1}{x+3}\right):\left(\dfrac{2}{x}-\dfrac{x-1}{x\cdot\left(x-3\right)}\right)\)

\(=\dfrac{2x-x+3}{\left(x-3\right)\left(x+3\right)}:\dfrac{2\left(x-3\right)-x+1}{x\left(x-3\right)}\)

\(=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x\left(x-3\right)}{2x-6-x+1}\)

\(=\dfrac{x}{x-5}\)

NV
2 tháng 6 2019

ĐKXĐ:...

\(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}=\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{-3x^2-2x+1}{3x}\right)\right]:\frac{x-1}{x}\)

\(=\left[\frac{2}{3x}-\frac{2\left(x+1\right)\left(1-3x\right)}{3x\left(x+1\right)}\right].\frac{x}{x-1}=\left(\frac{2}{3x}-\frac{2\left(1-3x\right)}{3x}\right).\left(\frac{x}{x-1}\right)\)

\(=\left(\frac{2-2+6x}{3x}\right)\left(\frac{x}{x-1}\right)=\frac{2x}{x-1}\)

\(B=2\cdot\left(x^3+1\right)\cdot9x^2-3x+1-54x^3\)

\(=18x^2\left(x^3+1\right)-3x+1-54x^3\)

\(=18x^5+18x^2-3x+1-54x^3\)

Biểu thức này có phụ thuộc vào x nha bạn

đề bài là tìm x à bạn? đề có cho điều kiện ko vậy ạ? (ví dụ như x nguyên?)

\(\left(x-1\right)^3+\left(x^3-8\right).3x.\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right).\left[\left(x-1\right)^2+\left(x^3-8\right).3x\right]=0\)

TH1: \(x-1=0\Leftrightarrow x=1\)

TH2: \(\left(x-1\right)^2+\left(x^3-8\right).3x=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x^3-8\right).3x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x^3-8=0\\3x=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left\{{}\begin{matrix}x=2\\x=0\end{matrix}\right.\end{matrix}\right.\)

Vậy \(x\in\left\{0;1;2\right\}\)

10 tháng 10 2020

\(VT=x^4+x^3y+xy^3+y^4-x^4-2x^2y^2-y^4\)

\(=x^3y+xy^3-2x^2y^2\)

\(=xy\left(x^2+y^2-2xy\right)\)

\(=xy\left(x-y\right)^2=VP\)