Tim Min : m^2 - 6m + x ^ 2 - x +3
b) 3x^2 -6x +12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+6x+5=\left(x^2+6x+9\right)-4=\left(x+3\right)^2-4\ge-4\)
Vậy \(MIN_A=-4\) khi \(\left(x+3\right)^2=0\Leftrightarrow x=-3\)
\(B=\left(x-1\right)\left(x-3\right)=x^2-4x+3=\left(x^2-4x+4\right)-1=\left(x-2\right)^2-1\ge-1\)
Vậy \(MIN_B=-1\) khi \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
\(C=x^2-x+8=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{31}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)
Vậy \(MIN_C=\dfrac{31}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)
\(D=x^2-3x=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
Vậy \(MIN_D=-\dfrac{9}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
\(A=x-x^2\)
\(A=-\left(x^2-x\right)\)
\(A=-\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)\)
\(A=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(A=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
Còn lại tương tự
a, \(m^2-6m+x^2-x+3\)
\(=m^2-3m-3m+9+x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{25}{4}\)
\(=\left(m-3\right)^2+\left(x-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\)
Với mọi giá trị của \(m;x\in R\) ta có:
\(\left(m-3\right)^2+\left(x-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\)
Để \(\left(m-3\right)^2+\left(x-\dfrac{1}{2}\right)^2-\dfrac{25}{4}=-\dfrac{25}{4}\) thì
\(\left\{{}\begin{matrix}\left(m-3\right)^2=0\\\left(x-\dfrac{1}{2}\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy..............
b, \(3x^2-6x+12\)
\(=3x^2-3x-3x+3+9\)
\(=3x\left(x-1\right)-3\left(x-1\right)+9\)
\(=3\left(x-1\right)^2+9\)
Với mọi giá trị của \(x\in R\) ta có:
\(3\left(x-1\right)^2+9\ge9\)
Để \(3\left(x-1\right)^2+9=9\) thì
\(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy..............
Chúc bạn học tốt!!!
a, \(A=m^2-6m+x^2-x+3\)
\(=x^2-6m+9+x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{25}{4}\)
\(=\left(m-3\right)^2+\left(x-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\ge\dfrac{-25}{4}\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(m-3\right)^2=0\\\left(x-\dfrac{1}{2}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(MIN_A=\dfrac{-25}{4}\) khi m = 3, \(x=\dfrac{1}{2}\)
b, \(B=3x^2-6x+12=3\left(x^2-2x+4\right)\)
\(=3\left(x^2-2x+1+3\right)=3\left(x-1\right)^2+9\ge9\)
Dấu " = " khi \(3\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy MIN B = 9 khi x = 1