1 . Tam giác ABC cân tại A, vẽ đường cao AH, kẻ tia Hx \\ AB cắt AC tại K. Nối BK cắt AH tại I. Gọi M là trung điểm của AB . Chứng minh :
a) Tam giác AHK cân
b) 3 điểm C , I ,M thẳng hàng
c) AI = 2 IH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\Delta ABC\)cân tại A có AH là đường cao nên AH vừa là phân giác vừa là trung tuyến
vì AB // Hx nên \(\widehat{A_1}=\widehat{H_1}\); \(\widehat{ABC}=\widehat{H_2}\) mà \(\widehat{A_1}=\widehat{A_2}\) \(\Rightarrow\)\(\widehat{A_2}=\widehat{H_1}\)
\(\Rightarrow\)\(\Delta AHK\)cân tại K \(\Rightarrow\)AK = HK ( 1 )
Mà \(\widehat{ABC}=\widehat{C}\)\(\Rightarrow\)\(\widehat{C}=\widehat{H_2}\)\(\Rightarrow\)\(\Delta KHC\)cân tại K \(\Rightarrow\)HK = KC ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)AK = CK
\(\Rightarrow\)K là trung điểm AC
\(\Delta ABC\)có BK và AH là trung tuyến và chúng giao nhau tại I
\(\Rightarrow\)I là trọng tâm \(\Delta ABC\)
Mà CM là trung tuyến nên CM cũng đi qua trọng tâm I
Vậy C,I,M thẳng hàng
Bây giờ bạn hãy chứng minh góc mà 3 điểm C,I,M tạo thành bằng 180 độ
1: Xét ΔBDH có \(\widehat{DBH}=\widehat{DHB}\left(=\widehat{ACB}\right)\)
nên ΔBDH cân tại D
Xét ΔABC có
H là trung điểm của BC
HD//AC
Do đó: D là trung điểm của AB
2: Xét ΔABC có
CD là đường trung tuyến
AH là đường trung tuyến
CD cắt AH tại G
Do đó: G là trọng tâm của ΔABC
=>BG là đường trung tuyến ứng với cạnh AC
mà E là trung điểm của AC
nên B,G,E thẳng hàng
a; Xét ΔABC có
H là trung điểm của BC
HK//AB
Do đó: K là trung điểm của AC
Xét ΔABC có
AH là đường trung tuyến
BK là đường trung tuyến
AH cắt BK tại G
Do đó: G là trọng tâm của ΔABC
b: Xét ΔABC có
G là trọng tâm
CI là đường trung tuyến
Do đó: C,I,G thẳng hàng
c: Xét tứ giác AIHK có
HK//AI
HK=AI
Do đó: AIHK là hình bình hành
mà AI=AK
nên AIHK là hình thoi
=>KI là đường trung trực của AH
c, G là trọng tâm
⇒HG=13AH=2(cm)⇒HG=13AH=2(cm)
d, Ta có: BAHˆ=CAHˆBAH^=CAH^ ( theo a )
Mà FHGˆ=CAHˆFHG^=CAH^ ( so le trong và Hx // AC )
⇒FHGˆ=BAHˆ⇒FHG^=BAH^
Chúc mn sang năm mới học giỏi nha !
⇒ΔAFH⇒ΔAFHcân tại F
⇒FA=FH⇒FA=FH (1)
Lại có: FHBˆ=ACBˆFHB^=ACB^ ( đồng vị và Hx // AC )
Mà ABCˆ=ACBˆABC^=ACB^ ( t/g ABC cân tại A )
⇒FHBˆ=ABCˆ⇒FHB^=ABC^
hay FHBˆ=FBHˆFHB^=FBH^
⇒ΔFBH⇒ΔFBH cân tại F
⇒FB=FH⇒FB=FH
Từ (1), (2) ⇒FB=FA⇒FB=FA
⇒CF⇒CF là trung tuyến
Mà G là trọng tâm
⇒C,G,F⇒C,G,F thẳng hàng ( đpcm )
Vậy...
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
a:
Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm củaBC
Xét ΔABC có
H là trung điểm của BC
HK//AB
DO đó: K là trung điểm của AC
Ta có: ΔAHC vuông tại H
mà HK là đường trung tuyến
nên KA=KH
hay ΔKAH cân tại K
b: Xét ΔABC có
BK là đường trung tuyến
AH là đường trung tuyến
BK cắt AH tại I
Do đó: I là trọng tâm của ΔABC
=>CI là đường trung tuyến ứng với cạnh AB
mà M là trung điểm của AB
nên C,I,M thẳng hàng
c: Vì I là trọng tâm của ΔABC
và AH là đường trung tuyến ứng với cạnh BC
nên AI=2IH