cho hình chóp SABC đáy là tam giác vuông tại A, AB=a,AC=a căn 3, cạnh SA=2a. có SA vuông góc với đáy. Thể tích mặt cầu ngoại tiếp hình chóp là V. Tính V
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(AH\perp BC\)
Áp dụng hệ thức lượng: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{4}{3a^2}\Rightarrow AH=\dfrac{a\sqrt{3}}{2}\)
\(tan\widehat{SHA}=\dfrac{2}{\sqrt{3}}=\dfrac{SA}{AH}\Rightarrow SA=\dfrac{AH.2}{\sqrt{3}}=a\)
Gọi M là trung điểm BC và N là trung điểm SA, dựng hình chữ nhật AMIN \(\Rightarrow\) I là tâm mặt cầu ngoại tiếp
\(AN=\dfrac{1}{2}SA=\dfrac{a}{2}\) ; \(AM=\dfrac{1}{2}BC=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)
\(\Rightarrow R=IA=\sqrt{AM^2+AN^2}=\dfrac{a\sqrt{5}}{2}\)
\(V=\dfrac{4}{3}\pi R^3=...\)
Đáp án là D.
Ta có: V S . A B C = 1 6 A B . A C . S A = a 3 3 .
\(BC=\sqrt{AB^2+AC^2}=2a\)
Gọi M là trung điểm BC \(\Rightarrow AM=\dfrac{1}{2}BC=a\)
GỌi N là trung điểm SA \(\Rightarrow AN=\dfrac{1}{2}SA=a\)
Dựng hình chữ nhật AMIN \(\Rightarrow\) I là tâm mặt cầu ngoại tiếp
\(R=IA=\sqrt{AM^2+AN^2}=a\sqrt{2}\)
\(\Rightarrow V=\dfrac{4}{3}\pi R^3=...\)