\(P=3\sqrt{a-5}+4\sqrt{9-a}\)\(5\le a\le9\)
Gọi m,n lần lượt là GTLN zà GTNN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gia tốc tỉ lệ với li độ, nên li độ tại B gấp đôi li độ tại A.
Giả sử li độ của A là x, thì của B là -2x (ngược dấu)
Li độ của M là: x - (x+2x) . 2 /3 = -x
Do vậy, gia tốc tại M là 3cm/s2
P/S: Đáp án chẳng liên quan gì nhỉ :)
rad/s là đơn vị của tần số góc ω chứ.
Vì BC có độ dài lớn nhất nên đề bài tương đương với: \(\sqrt[3]{BD^2}+\sqrt[3]{EC^2}=\sqrt[3]{BC^2}\)(Định lí Pythagoras đảo)
Lập phương 2 vế: \(BD^2+EC^2+3\sqrt[3]{\left(BD.EC\right)^2}\left(\sqrt[3]{BD^2}+\sqrt[3]{EC^2}\right)=BC^2\)
Ôn lại các hệ thức lượng cho tam giác vuông vì sắp tới mình sẽ dùng 1 chuỗi hệ thức đấy:
+Tam giác AHD vuông tại H, đường cao DH: \(AH^2=AD.AB,BH^2=BD.BA\)
+Tam giác AHC vuông tại H, đường cao EH: \(AH^2=AC.AE,CH^2=CA.CE\)
+Tam giác ABC vuông tại A, đường cao AH: \(AH^2=HB.HC,AH.BC=AB.AC,BC^2=AB^2+AC^2\)
$ ADHE là hình chữ nhật nên AD=HE
$ Tam giác AHE vuông tại H nên \(AH^2=AE^2+HE^2\)
Ok, giờ triển thoi: \(BD^2+EC^2+3\sqrt[3]{\left(BD.EC\right)^2}\left(\sqrt[3]{BD^2}+\sqrt[3]{EC^2}\right)=BC^2\)
\(\Leftrightarrow\left(AB-AD\right)^2+\left(AC-AE\right)^2+3\sqrt[3]{\left(BD.CE\right)^2}.\sqrt[3]{BC^2}=BC^2\)
\(\Leftrightarrow\left(AB^2+AC^2\right)+\left(AD^2+AE^2\right)-2\left(AB.AD+AC.AE\right)+3\sqrt[3]{\left(BD.CE.BC\right)^2}=BC^2\)
\(\Leftrightarrow BC^2+\left(AE^2+HE^2\right)-2\left(AH^2+AH^2\right)+3\sqrt[3]{\left(BD.CE.BC\right)^2}=BC^2\)
\(\Leftrightarrow AH^2-4AH^2-3\sqrt[3]{\left(BD.CE.BC\right)^2}=0\)
\(\Leftrightarrow3\sqrt[3]{\left(BD.CE.BC\right)^2}=3AH^2\)
\(\Leftrightarrow BD.CE.BC=AH^3\)
\(\Leftrightarrow BD.CE.BC.AH=AH^4\)
\(\Leftrightarrow\left(BD.BA\right)\left(CE.CA\right)=AH^4\)
\(\Leftrightarrow BH^2.CH^2=AH^4\Leftrightarrow BH.CH=AH^2\)---> Luôn đúng
Vậy giả thiết đúng.
(Bài dài giải mệt vler !!)
Áp dụng BĐT Bunhiacopxki ta có :
\(\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le\left(3^2+4^2\right)\left(x-1+5-x\right)\)
\(\Leftrightarrow\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le100\)
\(\Leftrightarrow f\left(x\right)\le10\)
Dấu "=" xảy ra :
\(\Leftrightarrow\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\)
Vậy...
\(A=2x\left(6-x\right)\le\dfrac{1}{2}\left(x+6-x\right)^2=18\)
Dấu "=" xảy ra khi \(x=3\)
\(B^2=x^2\left(9-x\right)=-x^3+9x^2\)
\(B^2=-x^3+9x^2-108+108=108-\left(x-6\right)^2\left(x+3\right)\le108\)
\(\Leftrightarrow B\le6\sqrt{3}\)
\(C^2=\left(6-x\right)^2x=32-\left(8-x\right)\left(x-2\right)^2\le32\)
\(\Rightarrow C\le4\sqrt{2}\)
A B C M N P Q
Có: AM=BM(gt)
AN=CN(gt)
=>PQ là đường trung bình của ht BMNC
=>PQ//MN
Bên dưới giải thiếu
Xét ΔABC có:
AM=BM(gt)
AN=CN(gt)
=>MN là đường trung bình
=>MN//BC
=>BMNC là hình thnag
(Xong nối đoạn dưới vào)
Lời giải:
Ta có:
$A^2=2x-3+5-2x+2\sqrt{(2x-3)(5-2x)}=2+2\sqrt{(2x-3)(5-2x)}\geq 2$
$\Leftrightarrow (A-\sqrt{2})(A+\sqrt{2})\geq 0$
Mà $A$ luôn không âm nên $A+\sqrt{2}\geq 0$
$\Rightarrow A-\sqrt{2}\geq 0\Rightarrow A\geq \sqrt{2}$
Vậy $A_{\min}=\sqrt{2}\Rightarrow b=\sqrt{2}$
Mặt khác: Áp dụng BĐT Bunhiacopxky:
$A^2\leq (2x-3+5-2x)(1+1)=4\Rightarrow A\leq 2$
Vậy $A_{\max}=2\Rightarrow a=2$
Khi đó: $a^2+b=2^2+\sqrt{2}=4+\sqrt{2}$
Mọi người làm cho em cách cấp 2 zới ạ , em làm cách đạo hàm cháu em ko hiểu :))
Thôi em làm đcc rồi ạ . BUnhia dạng2