K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\ge0\)

Xảy ra khi \(\dfrac{a}{x}=\dfrac{b}{y}\)

3 tháng 2 2023

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

3 tháng 2 2023

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

29 tháng 5 2021

Đề như này pk em?

\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\)

Áp dụng bđt Svac-xơ có:

\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)

Dấu = xảy ra <=>\(\dfrac{a}{x}=\dfrac{b}{y}\) và x+y=1

29 tháng 5 2021

Ta có : \(\dfrac{a^2.1}{x}+\dfrac{b^2.1}{y}=\dfrac{a^2\left(x+y\right)}{x}+\dfrac{b^2\left(x+y\right)}{y}\) = \(a^2+\dfrac{a^2y}{x}+\dfrac{b^2x}{y}+b^2\) = \(\left(\dfrac{a^2y}{x}+\dfrac{b^2x}{y}\right)+a^2+b^2\)

Các số dương \(\dfrac{a^2y}{x}\) và \(\dfrac{b^2x}{y}\) có tích không đổi nên tổng của chung nhỏ nhất khi và chỉ khi 

\(\dfrac{a^2y}{x}=\dfrac{b^2x}{y}\Leftrightarrow a^2y^2=b^2x^2\Leftrightarrow ay=bx\Leftrightarrow a\left(1-x\right)=bx\)

⇔ \(x=\dfrac{a}{a+b}\) ; \(y=\dfrac{b}{a+b}\)

Vậy GTNN của biểu thức \(\left(a+b\right)^2\) khi \(x=\dfrac{a}{a+b}\) và \(y=\dfrac{b}{a+b}\)

14 tháng 4 2017

Vì x+y=1 và x>0;y>0 nên \(\frac{a^2}{x};\frac{b^2}{y}\)có nghĩa

Ta có: \(a^2\ge0\forall a\)

\(b^2\ge0\forall b\)

GTNN của B đạt được \(\Leftrightarrow a^2;b^2\)nhỏ nhất

GTNN của \(a^2;b^2\)là 0

\(\Rightarrow GTNN\)của P là \(\frac{0}{x}+\frac{0}{y}=0\)

Vậy GTNN của P là 0

14 tháng 4 2017

a;b là hằng số dương mà bạn

NV
2 tháng 3 2021

\(M=3\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)+\dfrac{1}{2xy}\ge\dfrac{12}{2xy+x^2+y^2}+\dfrac{2}{\left(x+y\right)^2}=\dfrac{14}{\left(x+y\right)^2}=14\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

2 tháng 3 2021

Áp dụng bđt đã cho ta có \(M=4\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)-\dfrac{1}{x^2+y^2}\ge\dfrac{16}{2xy+x^2+y^2}-\dfrac{2}{\left(x+y\right)^2}=\dfrac{16}{\left(x+y\right)^2}-\dfrac{2}{\left(x+y\right)^2}=14\).

Đẳng thức xảy ra khi và chỉ khi \(x=y=\dfrac{1}{2}\)

NV
14 tháng 4 2022

\(A=\dfrac{x^2+y^2}{xy}+\dfrac{2xy}{x^2+y^2}=\dfrac{x^2+y^2}{2xy}+\dfrac{x^2+y^2}{2xy}+\dfrac{2xy}{x^2+y^2}\)

\(A\ge\dfrac{2xy}{2xy}+2\sqrt{\left(\dfrac{x^2+y^2}{2xy}\right)\left(\dfrac{2xy}{x^2+y^2}\right)}=3\)

Dấu "=" xảy ra khi \(x=y\)

\(B=\dfrac{\left(x+y\right)^2-4xy}{xy}+\dfrac{4xy}{\left(x+y\right)^2}=\dfrac{\left(x+y\right)^2}{xy}+\dfrac{4xy}{\left(x+y\right)^2}-4\)

\(B=\dfrac{\left(x+y\right)^2}{4xy}+\dfrac{4xy}{\left(x+y\right)^2}+\dfrac{3}{4}.\dfrac{\left(x+y\right)^2}{xy}-4\)

\(B\ge2\sqrt{\dfrac{\left(x+y\right)^2.4xy}{4xy.\left(x+y\right)^2}}+\dfrac{3}{4}.\dfrac{4xy}{xy}-4=1\)

\(B_{min}=1\) khi \(x=y\)

21 tháng 2 2017

Phần này chug: áp dụng Cauchy có: \(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\left(\frac{a+b}{2}\right)^2=\frac{1}{4}\)

a) \(A=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{1}{xy}\ge\frac{1}{\frac{1}{4}}=4\)

b) Áp dụng BĐT Schwart có: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)

c) đề câu này là \(x+\frac{1}{x}\)hay \(\frac{x+1}{x}\)vậy em?

22 tháng 2 2017

\(x+\frac{1}{x}\)đó