21^2.14.125/35^5.6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{21^2.14.125}{35^5.6}=\dfrac{3^2.7^2.2.7.5^3}{7^5.5^5.2.3}=\dfrac{3^2.7^3.2.5^3}{7^5.5^5.2.3}=\dfrac{3}{7^2.5^2}=\dfrac{3}{1225}\)
G=(212.14.125):355.6
=\(\frac{\left(3.7\right)^2.7.2.5^{^3}}{\left(7.5\right)^5.2.3}\)=\(\frac{3^2.7^2.7.5^3}{7^5.5^5.3}\)=\(\frac{3}{7^2.5^2}\)=\(\frac{3}{49.25}\)=\(\frac{3}{1225}\)
\(G=\frac{21^2.14.125}{35^5.6}\)
\(G=\frac{\left(3.7\right)^2.7.2.5^3}{\left(7.5\right)^5.2.3}=\frac{3}{7^2.5^2}=\frac{3}{49.25}=\frac{3}{1225}\)
1. \(\frac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}=\frac{3^{10}\left(11+5\right)}{3^9\cdot2^4}=\frac{3^{10}\cdot2^4}{3^9\cdot2^4}=3\)
2. \(\frac{2^{10}\cdot13+2^{10}\cdot65}{2^8\cdot104}=\frac{2^{10}\cdot\left(13+65\right)}{2^8\cdot104}=\frac{2^{10}\cdot78}{2^8\cdot104}=\frac{2^8\cdot2^2\cdot2\cdot3\cdot13}{2^8\cdot2^3\cdot13}=\frac{2^8\cdot2^3\cdot3\cdot13}{2^8\cdot2^3\cdot13}=3\)
3. \(\frac{72^2\cdot54^2}{108^4}=\frac{\left(2^3\cdot3^2\right)^2\cdot\left(2\cdot3^3\right)^2}{\left(2^2\cdot3^3\right)^4}\)
\(=\frac{2^6\cdot3^4\cdot2^2\cdot3^6}{2^8\cdot3^{12}}=\frac{2^8\cdot3^{10}}{2^8\cdot3^{12}}=\frac{3^{10}}{3^{12}}=3^{-2}=\frac{1}{9}\)
4. \(\frac{21^2\cdot14\cdot125}{35^5\cdot6}=\frac{\left(3\cdot7\right)^2\cdot2\cdot7\cdot5^3}{\left(5\cdot7\right)^5\cdot2\cdot3}=\frac{3^2\cdot7^2\cdot2\cdot7\cdot5^3}{5^5\cdot7^5\cdot2\cdot3}=\frac{3^2\cdot7^3\cdot2\cdot5^3}{5^3\cdot5^2\cdot7^2\cdot7^3\cdot2\cdot3}=\frac{3^2}{5^2\cdot3\cdot7^2}=\frac{3}{1225}\)
1: \(=\dfrac{2^{20}\cdot3^2+2^{24}}{2^{16}\cdot2^2\cdot5^2}=\dfrac{2^{20}\left(3^2+2^4\right)}{2^{18}\cdot5^2}=4\)
2: \(=\dfrac{2^5\left(2^8+1\right)}{2^2\left(2^8+1\right)}=2^3=8\)
3: \(=\dfrac{11\cdot3^{29}-3^{30}}{2^2\cdot3^{28}}=\dfrac{3^{29}\cdot8}{2^2\cdot3^{28}}=2\cdot3=6\)
\(\frac{21^2.14.125}{35^3.6}=\frac{3^2.7^2.7.2.5^3}{5^3.7^3.2.3}=\frac{3^2.7^3.5^3.2}{3.7^3.5^3.2}=3\)
\(\frac{21^2.14.125}{35^5.6}=\frac{\left(3.7\right)^2.7.2.5^3}{\left(5.7\right)^5.2.3}=\frac{3^2.7^2.7.2.5^3}{5^5.7^5.2.3}\)
\(=\frac{3^2.7^3.2.5^3}{5^5.7^5.2.3}=\frac{3.1.1.1}{5^2.7^2.1.1}\)
\(=\frac{3}{35^2}=\frac{3}{1225}\)