K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

1) \(9x^2+y^2-10y-12x+29=0\)

\(\Leftrightarrow\left(9x^2-12x+4\right)+\left(y^2-10y+25\right)=0\)

\(\Leftrightarrow\left(3x-2\right)^2+\left(y-5\right)^2=0\)

ta có : \(\left(3x-2\right)^2\ge0\forall x\)\(\left(y-5\right)^2\ge0\forall y\)

\(\Rightarrow\left(3x-2\right)^2+\left(y-5\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-2\right)^2=0\\\left(y-5\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2=0\\y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x=2\\y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=5\end{matrix}\right.\)

vậy \(x=\dfrac{2}{3};y=5\)

2) câu này đề sai rồi nha

3) \(x^2+29+9y^2+8x-12y=0\)

\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)+9=0\)

\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2+9=0\)

ta có : \(\left(x+4\right)^2\ge0\forall x\)\(\left(3y-2\right)^2\ge0\forall y\)

\(\Rightarrow\left(x+4\right)^2+\left(3y-2\right)^2+9\ge9>0\forall x;y\)

vậy phương trình vô nghiệm

7 tháng 8 2017

1.

\(x^2\)+\(y^2\)+2y-6x+10=0

=> \(x^2\)-6x+9 +\(y^2\)+2y+1=0

=> (x-3)\(^2\)+(y+1)\(^2\)=0

pt vô nghiệm

7 tháng 8 2017

4.

=> \(x^2\)+8x+16+(3y)\(^2\)-2.3.2y+4=0

=> (x+4)\(^2\)+(3y-2)\(^2\)=0

pt vô nghiệm


30 tháng 6 2019

1) \(x^2-2x+5+y^2-4y=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)

Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)

Để PT bằng 0 thì:

\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)

\(\Rightarrow x=1\)và \(y=2\)

2) \(y^2+2y+5-12x+9x^2=0\)

\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)

..............................................................................

..............<Giải thích như câu đầu>......................

.............................................................................

\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)

\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)

3) \(x^2+20+9y^2+8x-12y=0\)

\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)

......................................................................

...............<Giải thích như câu đầu>..............

.......................................................................

\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)

\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)

30 tháng 6 2019

1) \(x^2-2x+5+y^2-4y=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)

Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)

Để PT bằng 0 thì:

\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)

\(\Rightarrow x=1\)và \(y=2\)

2) \(y^2+2y+5-12x+9x^2=0\)

\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)

..............................................................................

..............<Giải thích như câu đầu>......................

.............................................................................

\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)

\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)

3) \(x^2+20+9y^2+8x-12y=0\)

\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)

......................................................................

...............<Giải thích như câu đầu>..............

.......................................................................

\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)

\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)

16 tháng 6 2018

1. Theo mình là sai đề, không biết có phải vậy không

2. (x^2 - 2.x.5 + 25) + (9y^2 - 2.3.2 +4) =0

(x-5)^2 + (3y-2)^2 = 0

TH1: (x-5)^2 = 0

  x-5=0

x=5

TH2:  (3y-2)^2 =0

3y -2=0

y=2/3

16 tháng 6 2018

1. x2+y2-2x+4y+3=0

<=>(x2-2x+1)+(y2+4y+2)=0

<=>(x-1)2+(y+2)2=0

Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

9 tháng 11 2017

2)

a) \(x^3-5x^2+8x-4=0\)

\(\Leftrightarrow x^3-4x^2-x^2+4x+4x-4=0\)

\(\Leftrightarrow x^3-x^2-4x^2+4x+4x-4=0\)

\(\Leftrightarrow\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy x=1 ; x=2

b) \(2x^3-x^2+3x+6=0\)

\(\Leftrightarrow2x^3-2x-x^2-x+6x+6=0\)

\(\Leftrightarrow\left(2x^3-2x\right)-\left(x^2+x\right)+\left(6x+6\right)=0\)

\(\Leftrightarrow2x\left(x^2-1\right)-x\left(x+1\right)+6\left(x+1\right)=0\)

\(\Leftrightarrow2x\left(x-1\right)\left(x+1\right)-x\left(x+1\right)+6\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2-2x-x+6\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2-3x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x^2-3x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x^2-3x=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x^2-3x=-6\left(loai\right)\end{matrix}\right.\)

Vậy x=-1

3 tháng 6 2017

a) \(x^2-8x+y^2+6y+25=0\)

\(\left(x-8\right)x+y\left(y+6\right)+25=0\)

\(x^2+y^2+6y+25=8x\)

\(\Rightarrow x=4,y=-3\)

3 tháng 6 2017

b )​4x2-4x+9y2 -12y +5

<=> [( 2x )2​ - 4x + 1 ] [ (3y) 2 ​- 12y + 4 )] = 0

<=> ( 2x - 1 )2 ​ + ( 3y - 2 )2​ =0   ( Vì (2x -1)2 ​>=0 , ( 3y - 2 )2 >= 0 )

<=> 2x - 1 = 0 và 3y -2 = 0

<=> x = 1/2     và y = 2/3

7 tháng 8 2017

1) \(4x^2+4x+6y+9y^2+2=0\Leftrightarrow\left(4x^2+4x+1\right)+\left(9y^2+6y+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)^2+\left(3y+1\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y+1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\y=\dfrac{-1}{3}\end{matrix}\right.\)

vậy \(x=\dfrac{-1}{2};y=\dfrac{-1}{3}\)

2) \(25x^2+9y^2-10x+12y+5=0\Leftrightarrow\left(25x^2-10x+1\right)+\left(9y^2+12y+4\right)=0\)

\(\Leftrightarrow\left(5x-1\right)^2+\left(3y+2\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(5x-1\right)^2=0\\\left(3y+2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x-1=0\\3y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=1\\3y=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{-2}{3}\end{matrix}\right.\)

vậy \(x=\dfrac{1}{5};y=\dfrac{-2}{3}\)

3) \(9x^2+4y^2+12x-8y+17=0\Leftrightarrow\left(9x^2+12x+4\right)+\left(4y^2-8y+4\right)+9=0\)

\(\Leftrightarrow\left(3x+2\right)^2+\left(2y-2\right)^2+9=0\)

ta có : \(\left(3x+2\right)^2\ge0\forall x\)\(\left(2y-2\right)^2\ge0\forall y\)

\(\Rightarrow\) \(\left(3x+2\right)^2+\left(2y-2\right)^2+9\ge9>0\forall x;y\)

\(\Rightarrow\) phương trình vô nghiệm

9 tháng 1 2017

\(x^2+20+9y^2+8x-12y=0\)

\(\Leftrightarrow\left(x^2+8x+4^2\right).\left[\left(3y\right)^2-2.3y.2+2^2\right]=0\)

\(\Leftrightarrow\left(x+2\right)^2.\left(3y-2\right)^2=0\)

\(\Leftrightarrow\left[\begin{matrix}x+4=0\\3y-2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-4\\y=\frac{2}{3}\end{matrix}\right.\)

Vậy ............

9 tháng 1 2017

\(x^2+20+9y^2+8x-12y=0\)

\(\Leftrightarrow\left(x^2+8x+16\right).\left(9y^2-6y+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)^2.\left(3y-2\right)^2=0\)

\(\Leftrightarrow\left(x+4\right)\left(3y-2\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x+4=0\\3y-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-4\\y=\frac{2}{3}\end{matrix}\right.\)

Vậy \(x=-4\) \(y=\frac{2}{3}\)