Hai đường thẳng AB, CD cắt nhau tại O sao cho góc AOC = 80 độ. Gọi OM, ON theo thứ tự là tia phân giác của các góc AOC, BOD. Chứng minh các tia OM, ON là hai tia đối nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : 2 đường thẳng AB và CD cách nhau tại O sẽ tạo ra các góc đối đỉnh
=>AOC=BOD [2 góc đối dỉnh]
TA CÓ: OM và ON lần lượt là tia phân giác của AOC ,BOD
Suy ra OM và ON là 2 tia đối nhau
góc AOC + COB = 180đ (kề bù)
có AOC = DOB và vì OM, ON là tia phân giác 2 góc này nên MOC = NOB
=> MOC + NOB = AOC (*)
CÓ MOC + COB + NOB mà từ (*) => MOC + COB + NOB= AOC +COB và bằng 180 độ
2 tia OM và ON có chung đỉnh O và tạo vs nhau một góc = 180 độ
=> OM và ON là 2 tia đối nhau
(tự vẽ hình)
a) Vì góc BOD và góc AOB là hai góc đối đỉnh nên \(\widehat{BOD}=180^o-\widehat{AOB}=180^o-80^o=100^o\) (3)
=> Tia OA và tia OD đối nhau.(1)
Vì góc AOC và góc AOB là hai góc đối đỉnh nên \(\widehat{AOC}=180^o-\widehat{AOB}=180^o-80^o=100^o\) (4)
=> Tia OB và tia OC đối nhau.(2)
Từ (1);(2);(3);(4) suy ra: góc AOC và góc BOD là hai góc đối đỉnh.
b) Xét: Tia Om, On lần lượt là tia phân giác của góc AOC, BOD.
- Vì tia Om là tia phân giác của góc AOC nên góc COm=MOA=1/2. AOC.
- Vì tia ON là tia phân giác của góc BOD nên góc BOn=DOn=1/2.DOB.
Mà góc AOC = DOB => COm= BOn
Vì CO và OB là hai tia đối nhau
=> \(\widehat{COm}+\widehat{mOB}=180^o\)
=> \(\widehat{COn}+\widehat{BOn}=180^o\)
=> \(\widehat{COm}+\widehat{BOn}=180^o\)
hay Tia Om và On là 2 tia đối nhau.
Chúc cậu học tốt!