K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 12 2023

Lời giải:
a. $y=mx-x^2-2x+mx^2+m=x^2(m-1)+x(m-2)+m$

Lấy $x_1,x_2\in R$ sao cho $x_1\neq x_2$

$y(x_1)=x_1^2(m-1)+x_1(m-2)+m$

$y(x_2)=x_2^2(m-1)+x_2(m-2)+m$
Để hàm đồng biến thì:

$\frac{y(x_1)-y(x_2)}{x_1-x_2}>0$

$\Leftrightarrow \frac{x_1^2(m-1)+x_1(m-2)+m-[x_2^2(m-1)+x_2(m-2)+m]}{x_1-x_2}>0$

$\Leftrightarrow \frac{(m-1)(x_1^2-x_2^2)+(m-2)(x_1-x_2)}{x_1-x_2}>0$

$\Leftrightarrow (m-1)(x_1+x_2)+(m-2)>0$ 

Với mọi $x_1,x_2\in\mathbb{R}$ thì không có cơ sở để tìm $m$ sao cho hàm đồng biến.

b.

Xét tương tự câu 1, với $x_1\neq x_2\in \mathbb{R}$ thì hàm đồng biến khi:

$(m^2-3m+2)(x_1+x_2)+(m-1)>0$

Với mọi $x_1, x_2\in\mathbb{R}$ thì điều này xảy ra khi:

$m^2-3m+2=0$ và $m-1>0$

$\Leftrightarrow (m-1)(m-2)=0$ và $m-1>0$

$\Leftrightarrow m=2$

 

28 tháng 4 2018

Thay  x   =   2 ;   y   =   − 3   v à o   y   =   m x   –   3 m   +   2 ta được

m . 2   –   3 m   +   2   =   − 3   ⇔   − m   =   − 5     ⇔ m   =   5

Đáp án cần chọn là: C

21 tháng 10 2021

Đường thẳng y = ( m -3 ).x + 5 đi qua A(-5;1)

=> A(-5;1) thuộc hàm số y = ( m - 3 ).x + 5

                                        1 = ( m - 3).(-5) + 5

                                        1 = -5m + 15 + 5

                                        1 = -5m + 20

                                        -5m = -19

                                            m = 19/5

Vậy m = 19/5 thì y = ( m - 3)x + 5 đi qua A(-5;1)

21 tháng 10 2021

ceggcvg

1 tháng 8 2023

Bước 1: Tìm điểm chung của hai đồ thị y=(3m+2)⋅2+5(m≠−1) và y=−x−1:

Để điểm A(X,Y) là điểm chung của hai đồ thị, ta giải hệ phương trình:

(3m+2)⋅2+5=−X−1

=> m = -(x+10)/6

Bước 2: Tính giá trị p tại điểm A:

Ta đã biết Y=−X−1, thay vào hàm số p:

p=Y^2+2X−3

p=(−X−1)^2+2X−3

p=X^2+2X+1+2X−3

p=X^2+4X−2

Bước 3: Tìm giá trị nhỏ nhất của p:

Hàm số p=X^2+4X−2 là một hàm bậc hai, với hệ số a của X^2 là 1>0, vì vậy đồ thị của hàm số p là một đường parabol mở hướng lên. Để tìm giá trị nhỏ nhất của p, ta xác định điểm cực tiểu của đường parabol, đó là điểm mà đường cong cực tiểu nhất.

Đối với một hàm bậc hai y=ax^2+bx+c, điểm cực tiểu được xác định bởi:

Xmin​=-b/2a​

Ymin​=f(Xmin​)

Xmin​=−2

Ymin​=(−2)2+4⋅(−2)−2=0

Vậy giá trị nhỏ nhất của p là pmin​=0.

Bước 4: Tìm giá trị m tương ứng với pmin​=0:

Ta đã biết m=−(X+10)/6​, thay pmin​=0 vào đó:

0=−(Xmin​+10)/6​

=> 0=-4/3​

Điều này không thỏa mãn phương trình, vậy không có giá trị m nào khiến pmin​=0.

 

31 tháng 7 2021

`f'(x) = x^2 - 4x+m`

`f'(x) >=0 <=>x^2-4x+m>=0`

`<=> \Delta' >=0`

`<=> 2^2-1.m>=0`

`<=> m<=4`

Vậy....

NV
13 tháng 12 2021

a. Hàm có 3 cực trị \(\Rightarrow m< 0\)

\(y'=8x^3+4mx=4x\left(2x^2+m\right)=0\Rightarrow\left[{}\begin{matrix}x=0;y=-\dfrac{3m}{2}\\x=-\sqrt{-\dfrac{m}{2}};y=-\dfrac{m^2+3m}{2}\\x=\sqrt{-\dfrac{m}{2}};y=-\dfrac{m^2+3m}{2}\end{matrix}\right.\)

Trong đó \(A\left(0;-\dfrac{3m}{2}\right)\) là cực đại và B, C là 2 cực tiêu

Do tam giác ABC luôn cân tại A \(\Rightarrow\) tâm I của đường tròn ngoại tiếp luôn nằm trên trung trực BC hay luôn nằm trên Oy

Mà tứ giác ABCO nội tiếp \(\Rightarrow OI=AI\Rightarrow I\)  là trung điểm OA (do I, O, A thẳng hàng, cùng nằm trên Oy)

\(\Rightarrow I\left(0;-\dfrac{3m}{4}\right)\)

Mặt khác trung điểm BC cũng thuộc Oy và IB=IC (do I là tâm đường tròn ngoại tiếp)

\(\Rightarrow\) I trùng trung điểm BC

\(\Rightarrow-\dfrac{3m}{4}=-\dfrac{m^2+3m}{2}\) \(\Rightarrow m\)

NV
13 tháng 12 2021

b.

Từ câu a ta thấy khoảng cách giữa 2 cực đại là:

\(\left|x_B-x_C\right|=2\sqrt{-\dfrac{m}{2}}=5\Rightarrow m=-\dfrac{25}{2}\)

Tọa độ giao điểm là:

2x-1=-mx-5 và y=2x-1

=>x(m+2)=-4 và y=2x-1

=>x=-4/m+2 và y=-8/m+2-1=(-8-m-2)/(m+2)=(-m-10)/(m+2)

Để x,y đối nhau thì -4-m-10=0

=>m+14=0

=>m=-14