K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AD/DB=AM/MB

AE/EC=AM/MC

mà MB=MC

nên AD/DB=AE/EC

=>DE//BC

Để DE là đừog trung bình của ΔABC thì AD/DB=AE/EC=1

=>AM/MB=AM/MC=1

=>ΔABC vuông tại A

Gọi M là trung điểm của BC, D là chân đường phân giác kẻ từ A xuống BC

=>A,G,M thẳng hàng và A,I,D thẳng hàng

BM=CM=BC/2=7,5cm

AD là phân giác

=>BD/AB=CD/AC
=>BD/4=CD/6=15/10=1,5

=>BD=6cm

=>MD=1,5cm

IG//DM

=>IG/DM=AI/AD=2/3

=>IG=2/3DM=1cm

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

Kéo dài $BG$ cắt $AC$ tại $K$. Kẻ $KK'\perp d$

Trên $BG$ lấy trung điểm $I$. Kẻ $II'\perp d$

Vận dụng công thức đường trung bình trong hình thang ta có:

Xét hình thang $BGG'B'$ có đtb $II'$ thì:

$II'=\frac{BB'+GG'}{2}(1)$

Xét hình thang $AA'C'C$ có đường trung bình $KK'$ thì:

$KK'=\frac{AA'+CC'}{2}(2)$

Xét hình thang $II'KK'$ có đường trung bình $GG'$ thì:

$GG'=\frac{II'+KK'}{2}(3)$

Từ $(1);(2);(3)$ suy ra:

$GG'=\frac{BB'+GG'+AA'+CC'}{4}$

$\Rightarrow GG'=\frac{AA'+BB'+CC'}{3}$ 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Hình vẽ:

7 tháng 5 2021

Xin lỗi mấy bạn . Mình bị thiếu chỗ (cho tam giác ABC vuông tại A)

7 tháng 5 2021

Giúp mình với