K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2020

\(2015^{2015}=2014.2015^{2014}+2015^{2014}\)

Trên là 1 cách viết

G/s: 2015^2015 có thể viết thành tổng k số tự nhiên bất kì: n1 + n2 +...+nk 

Xét \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\) tích của 3 số tự nhiên liên tiếp vừa chia hết cho 2 và vừa chia hết cho 3 

mà ( 2; 3) = 1; 2.3 = 6 

Do đó: \(n^3-n\) chia hết cho 6 

Khi đó:

 \(n_1^3-n_1⋮6\)

\(n_2^3-n_2⋮6\)

\(n_3^3-n_3⋮6\)

....

\(n_k^3-n_k⋮6\)

=> \(\left(n_1^3-n_1\right)+\left(n_2^3-n_2\right)+...+\left(n_k^3-n_k\right)⋮6\)

=> \(\left(n_1^3+n_2^3+...+n_k^3\right)-\left(n_1+n_2+...+n_k\right)⋮6\)

=> \(\left(n_1^3+n_2^3+...+n_k^3\right);\left(n_1+n_2+...+n_k\right)\) có cùng số dư khi chia cho 6

Mặt khác: 

\(n_1+n_2+...+n_k=2015^{2015}\equiv\left(-1\right)^{2015}\equiv-1\equiv5\left(mod6\right)\)

=> 2015^2015 chia 6 dư 5

Hoặc có thể làm: 

\(n_1+n_2+...+n_k=2015^{2015}\)

vì 2015 chia 6 dư 5 ; 5^2 chia 6 dư 1 => 2015^2 chia 6 dư 1=> 2015^2014 chia 6 dư 1 => 2015^2015 chia 6 dư 5 

Vậy Tổng lập phương các số tự nhiên đó chia 6 dư 5

Bài 1: Cho các chữ số 0,a,b. Hãy viết tất cả các số có 3 chữ số. Chứng minh rằng tổng tất cả các số đó chia hết cho 211.Bài 2: Viết số 1998 thành tổng của 3 số tự nhiên tùy ý. Chứng minh rằng tổng các số lập phương của 3 số đó chia hết cho 6.Bài 3: Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)a) Có giá trị là số tự nhiênb) Là phân số tối giảnBài 4: a) Tìm số tự nhiên n để n+15 chia...
Đọc tiếp

Bài 1: Cho các chữ số 0,a,b. Hãy viết tất cả các số có 3 chữ số. Chứng minh rằng tổng tất cả các số đó chia hết cho 211.

Bài 2: Viết số 1998 thành tổng của 3 số tự nhiên tùy ý. Chứng minh rằng tổng các số lập phương của 3 số đó chia hết cho 6.

Bài 3: Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)

a) Có giá trị là số tự nhiên

b) Là phân số tối giản

Bài 4: a) Tìm số tự nhiên n để n+15 chia hết cho n+3

b) Tìm số tự nhiên n sao cho 2-1 chia hết cho 7

Bài 5: a) Tìm số dư khi chia (n3-1)111X(n2-1)333 cho n (n thuộc N)

b) Số A chia 7 dư 3, chia 17 dư 12, chia 23 dư 7. Hỏi A chia 2737 dư bao nhiêu?

Bài 6: Cho a * b =45512 . Tìm số dư trong phép chia a+b cho 3,4.

Bài 7: Tìm số dư khi chia (910)11 - (59)10 cho 13

Bài 8: Tìm chữ số hàng đơn vị, hàng chục, hàng trăm của (29)2010

0
13 tháng 1 2019

Tớ nêu ý kiến =) bài chưa qua kiểm định nhé ^^

Lấy tổng lập phương 2018 số đó trừ đi P sẽ đc 1 hiệu chia hết cho 6

VD nhé : a1^3 - a1 = a1.(a1^2-1) = a1.(a1-1).(a1+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

Mấy cái còn lại cx tương tự như thế thì hiệu nhận đc đúng là chia hết cho 6 đúng ko?

Thế thì P chia 6 dư 5 rồi =D