Cho hình bình hành ABCD. Từ A kẻ \(AI\perp BD\), từ C kẻ \(CK\perp BD\)
a/ Tứ giác AICK là hình gì?
b/ Tia AI cắt CD tại M, tia CK cắt AB tại N. Chứng minh rằng trung điểm của đoạn MN thuộc đường chéo BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#) Tự vẽ hình
a) \(\Delta AID=\Delta BKC\left(ch-gn\right)\)
\(\Rightarrow AI=CK\)(2 cạnh tương ứng)
\(\Delta AKB=\Delta CKD\left(ch-gn\right)\)
\(\Rightarrow AI=CK\)(2 cạnh tương ứng)
\(\Rightarrow\)Tứ giác AICK là hình bình hành
a )
Tam giác AID = Tam giác BKC ( cạnh huyền - góc nhọn )
=> AI = CK ( 2 cạnh t.ứ )
Tam giác AKB = Tam giác CKD ( cạnh huyền - góc nhọn )
=> AI = CK ( 2 cạnh tương ứng )
=> Tứ giác AICK là hình bình hành
~ Hok tốt ~
#Deku
a: Xét tứ giác AICK có
AK//CI
AK=CI
Do đó: AICK là hình bình hành
a) Vì ABCD là hình bình hành \(\left(gt\right)\)
\(\Rightarrow\left\{{}\begin{matrix}AD//BC\\AD=BC\end{matrix}\right.\)\(\left(t/c\right)\)
Vì \(\left\{{}\begin{matrix}AI\perp BD\\CK\perp BD\end{matrix}\right.\)\(\left(gt\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{AID}=\widehat{BKC}=90^o\\AI//CK\end{matrix}\right.\)
Vì \(AD//BC\left(cmt\right)\Rightarrow\widehat{ADI}=\widehat{CBK}\) (2 góc so le trong)
Xét \(\Delta AID\) và \(\Delta CKB\) có:
\(\widehat{AID}=\widehat{BKC}=90^o\left(cmt\right)\)
\(AD=BC\left(cmt\right)\)
\(\widehat{ADI}=\widehat{CBK}\left(cmt\right)\)
Nên \(\Delta AID=\Delta CKB\) (ch-gn)
\(\Rightarrow AI=CK\) (2 cạnh tương ứng)
Xét tứ giác AICK có \(\left\{{}\begin{matrix}AI//CK\left(cmt\right)\\AI=CK\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\) AICK là hình bình hành (dhnb)
b) Vì \(AI//CK\left(cma\right)\Leftrightarrow AM//CN\)
Vì ABCD là hình bình hành \(\left(gt\right)\)
\(\Rightarrow AB//CD\Leftrightarrow AN//CM\)
Xét tứ giác AMCN có \(\left\{{}\begin{matrix}AM//CN\left(cmt\right)\\AN//CM\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\) AMCN là hình bình hành (dhnb).
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Suy ra:AN//CM
a:
AK//BD
N\(\in\)BD
Do đó: AK//BN
Xét ΔMAK và ΔMBN có
\(\widehat{MAK}=\widehat{MBN}\)(hai góc so le trong, AK//BN)
MA=MB
\(\widehat{AMK}=\widehat{BMN}\)
Do đó: ΔMAK=ΔMBN
=>AK=BN
Xét tứ giác AKBN có
AK//BN
AK=BN
Do đó: AKBN là hình bình hành
b: ABCD là hình chữ nhật
=>AC cắt BD tại trung điểm của mỗi đường và AC=BD
mà AC cắt BD tại O
nên O là trung điểm chung của AC và BD
Xét ΔBAC có
CM,BO là các đường trung tuyến
CM cắt BO tại N
Do đó: N là trọng tâm của ΔBAC
Xét ΔABC có
N là trọng tâm của ΔBAC
CM là đường trung tuyến ứng với cạnh AB
Do đó: \(CN=2NM\)(1)
Ta có: AKBN là hình bình hành
=>AB cắt KN tại trung điểm của mỗi đường
mà M là trung điểm của AB
nên M là trung điểm của KN
=>KN=2MN(2)
Từ (1) và (2) suy ra CN=NK
mà C,N,K thẳng hàng
nên N là trung điểm của CK
c: Xét ΔBAC có
BO là đường trung tuyến ứng với cạnh AC
N là trọng tâm của ΔABC
Do đó: \(BN=\dfrac{2}{3}BO\) và \(ON=\dfrac{1}{3}BO\)
=>\(\dfrac{BN}{NO}=\dfrac{\dfrac{2}{3}BO}{\dfrac{1}{3}BO}=\dfrac{2}{3}:\dfrac{1}{3}=\dfrac{2}{3}\cdot3=2\)
=>BN=2NO
O là trung điểm của BD
=>BO=DO=BD/2
\(BN=\dfrac{2}{3}BO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}BD\)
\(NO=\dfrac{1}{3}BO=\dfrac{1}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{6}BD\)
DO+ON=DN
=>\(\dfrac{1}{2}BD+\dfrac{1}{6}BD=DN\)
=>\(DN=\dfrac{2}{3}BD\)
\(\dfrac{DO}{DN}=\dfrac{\dfrac{1}{2}BD}{\dfrac{2}{3}BD}=\dfrac{1}{2}:\dfrac{2}{3}=\dfrac{3}{4}\)
Xét ΔDNC có OE//NC
nên \(\dfrac{DE}{DC}=\dfrac{DO}{DN}=\dfrac{3}{4}\)
a: Xét ΔADI vuông tại I và ΔCBK vuông tại K có
AD=CB
\(\widehat{ADI}=\widehat{CBK}\)
Do đó: ΔADI=ΔCBK
Suy ra: AI=CK
Xét tứ giác AICK có
AI//CK
AI=CK
Do đó: AICK là hình bình hành
b: Xét tứ giác AMCN có
AM//CN
AN//CM
Do đó: AMCN là hình bình hành
Suy ra: AN=MC
Ta có: AN+NB=AB
CM+MD=CD
mà AB=CD
và AN=MC
nên NB=MD
Xét tứ giác BNDM có
BN//DM
BN=DM
Do đó: BNDM là hình bình hành
Suy ra; Hai đường chéo BD và MN cắt nhau tại trung điểm của mỗi đường