CMR: \(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}< \dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
3A = 1 - \(\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)
4A = ( 1 - \(\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\) ) + ( \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) )
= 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
Đặt B = 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}\)
3B = 3 - 1 + \(\dfrac{1}{3}-\dfrac{1}{3^2}\) + ... - \(\dfrac{1}{3^{98}}\)
4B = ( 3 - 1 + \(\dfrac{1}{3}-\dfrac{1}{3^2}\) + ... - \(\dfrac{1}{3^{98}}\) ) + ( 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}\) )
= 3 - \(\dfrac{1}{3^{99}}\)
B = \(\dfrac{3}{4}-\dfrac{1}{3^{99}\cdot4}\)
⇒ 4A = \(\dfrac{3}{4}-\dfrac{1}{3^{99}\cdot4}\) - \(\dfrac{100}{3^{100}}\)
A = \(\dfrac{3}{16}-\dfrac{1}{3^{99}\cdot4^2}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
Vậy A < \(\dfrac{3}{16}\)
Lời giải:
Gọi phân số vế trái là $A$. Gọi tử số là $T$. Xét mẫu số:
\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(=1-\frac{1}{2}+1-\frac{1}{3}+1-\frac{1}{4}+....+1-\frac{1}{100}\)
\(=99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=100-(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100})\)
\(=\frac{1}{2}\left[200-(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100})\right]=\frac{1}{2}T\)
$\Rightarrow A=\frac{T}{\frac{1}{2}T}=2$
Ta có đpcm.
Giải:
Vì \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\) nên phần tử gấp 2 lần phần mẫu
Ta có:
\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=\dfrac{2.\left[100-\left(\dfrac{3}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{100}\right)\right]}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=\dfrac{2.\left[\left(2-\dfrac{3}{2}\right)+\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{5}\right)+...+\left(1-\dfrac{1}{100}\right)\right]}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=\dfrac{2.\left(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{4}{5}+...+\dfrac{99}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=2\)
Vậy \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\left(đpcm\right)\)
Chúc bạn học tốt!
Ta có:
\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\)
\(\Rightarrow100-1-\dfrac{1}{2}-...-\dfrac{1}{100}=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\)
\(\Rightarrow100=1+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{3}+...+\dfrac{1}{100}+\dfrac{99}{100}\)
\(\Rightarrow100=1+1+1+...+1\) (\(100\) số \(1\))
\(\Rightarrow100=100\)
Vậy \(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\) (Đpcm)
Ta có :
\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{100}\right)\)
\(=100-1-\dfrac{1}{2}-\dfrac{1}{3}-..................-\dfrac{1}{100}\)
\(=99-\dfrac{1}{2}-\dfrac{1}{3}-................-\dfrac{1}{100}\)
\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+..................+\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}+\dfrac{2}{3}+.................+\dfrac{99}{100}\)
Vậy :\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+....................+\dfrac{99}{100}\)
\(\Rightarrowđpcm\)
\(3C=1+\dfrac{2}{3}+\dfrac{2}{3^2}+...+\dfrac{100}{3^{99}}\\ \Rightarrow2C=3C-C=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\\ D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ 2D=3D-D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)=1-\dfrac{1}{3^{99}}< 1\\ \Rightarrow D< \dfrac{1}{2}\\ \Rightarrow2C< 1+\dfrac{1}{2}\\ \RightarrowĐPCM\)
2C < \(1+\dfrac{1}{2}\)
\(\Rightarrow\)C < \(\dfrac{3}{4}\)
Đặt A \(=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\)
\(\Rightarrow3A=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\)
\(\Rightarrow3A-A=\left(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\right)\)
\(\Rightarrow2A=1+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\dfrac{100}{3^{100}}\)
\(\Rightarrow2A=1+\dfrac{1}{2}-\dfrac{1}{3^{99}\times2}-\dfrac{100}{3^{100}}\)
\(\Rightarrow A=\dfrac{3}{4}-\dfrac{1}{3^{99}\times4}-\dfrac{50}{3^{100}}< \dfrac{3}{4}\)
Vậy ...
Chúc Các Bạn Học Tốt !