K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

=> \(\dfrac{2}{6}\)+\(\dfrac{2}{12}\)+\(\dfrac{2}{20}\)+...+\(\dfrac{2}{x.\left(x+1\right)}\)=\(\dfrac{2011}{2013}\)

=> 2.(\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{4.5}\)+...+\(\dfrac{1}{x.\left(x+1\right)}\)=\(\dfrac{2011}{2013}\)

=> 2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\)=\(\dfrac{2011}{2013}\)

=> 2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{x+1}\)) =\(\dfrac{2011}{2013}\)

=>\(\dfrac{x+1-2}{2.\left(x+1\right)}\)=\(\dfrac{2011}{2013}\)

=> \(\dfrac{x-1}{x+1}\)=\(\dfrac{2011}{2013}\)

=> 2013.(x-1) = 2011.(x+1)

=> 2013x-2013= 2011x+2011

=> 2013x -2011x= 2013+2011

=> 2x= 4024

=> x= 2012

Chúc bạn học tốt!Tick cho mk nhévui

23 tháng 8 2018

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2011}{2013}\)

\(\Rightarrow2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2011}{2013}\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2011}{4026}\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2011}{4026}\)

\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2013}\)

\(\Rightarrow x+1=2013\)

\(\Rightarrow x=2012\)

Chúc hok dốt!

8 tháng 3 2018

a) \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)

\(\Rightarrow\)\(2^x+2^x.2+2^x.2^2+2^x.2^3=480\)

\(\Leftrightarrow\)\(2^x\left(1+2+2^2+2^3\right)=480\)

\(\Leftrightarrow\)\(2^x\left(1+2+4+8\right)=480\)

\(\Leftrightarrow\)\(2^x.15=480\)

\(\Rightarrow\)\(2^x=480:15\)

\(\Leftrightarrow2^x=32\)

\(\Rightarrow2^x=2^5\)

\(\Rightarrow x=5\)

Vậy x = 5.

30 tháng 8 2018

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{4020}{2011}\)

\(\Rightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{4020}{2011}\)

\(\Rightarrow\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{4020}{2011}\)

\(\Rightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{4020}{2011}\)

\(\Rightarrow\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{4020}{2011}:2\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2010}{2011}\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2010}{2011}\)

\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{2010}{2011}\)

\(\Rightarrow\dfrac{1}{x+1}=-\dfrac{2009}{4022}\)

\(\Rightarrow4022=-2009\left(x+1\right)\)

\(\Rightarrow4022=-2009x-2009\)

\(\Rightarrow2009x=-2009-4022\)

\(\Rightarrow2009x=-6031\)

\(\Rightarrow x=-\dfrac{6031}{2009}\)

18 tháng 4 2022

a) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\)

Th1 : \(x-\dfrac{1}{2}=0\)

         \(x=0+\dfrac{1}{2}\)

         \(x=\dfrac{1}{2}\)

Th2 : \(-3-\dfrac{x}{2}=0\)

         \(\dfrac{x}{2}=-3\)

         \(x=\left(-3\right)\cdot2\)

         \(x=-6\)

Vậy \(x\) = \(\left(\dfrac{1}{2};-6\right)\)

b) \(x-\dfrac{1}{8}=\dfrac{5}{8}\)

    \(x=\dfrac{5}{8}+\dfrac{1}{8}\)

   \(x=\dfrac{3}{4}\)

c) \(-\dfrac{1}{2}-\left(\dfrac{3}{2}+x\right)=-2\)

                \(\dfrac{3}{2}+x=-\dfrac{1}{2}-\left(-2\right)\)

                \(\dfrac{3}{2}+x=\dfrac{3}{2}\)

                       \(x=\dfrac{3}{2}-\dfrac{3}{2}\)

                      \(x=0\)

d) \(x+\dfrac{1}{3}=\dfrac{-12}{5}\cdot\dfrac{10}{6}\)

    \(x+\dfrac{1}{3}=-4\)

    \(x=-4-\dfrac{1}{3}\)

    \(x=-\dfrac{13}{3}\)

\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\cdot x=\left(1+\dfrac{2011}{2}\right)+\left(1+\dfrac{2010}{3}\right)+...+\left(\dfrac{1}{2012}+1\right)+1\)

\(\Leftrightarrow x\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)=\dfrac{2013}{2}+\dfrac{2013}{3}+...+\dfrac{2013}{2013}\)

=>x=2013