K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

\(VT=\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)=VP\)

Vậy \(\left(x+y\right)^2-y^2=x\left(x+2y\right)\)

24 tháng 7 2017

\(VT:\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)=VP\left(đpcm\right)\)

12 tháng 6 2017

Dễ mà bạn !!!!

\(x^3+y^3-xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x^2-xy+y^2\right)-xy\right]\)

\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)^2\) (đpcm)

28 tháng 2 2022

CHỈ GỢI Ý THÔI 

M = (x^2 - xy) + (xy^2 - y^3) - x - y^2 + 5

M = x(x - y) + y^2(x - y) - x - y^2 + 5 

.....

PHẦN N KO BIẾT LÀM

22 tháng 8 2020

Bài 1:

a) \(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2=x^2+2xy=x\left(x+2y\right)\)

b) Sửa đề: \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x-y\right)^2\left(x+y\right)^2\)

c) \(x\left(x-3y\right)^2+y\left(y-3x\right)^2=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)

\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)

\(=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3\)

22 tháng 8 2020

Bài 2:

a) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)

\(=2a\left(a^2+3b^2\right)\)

b) \(\left(a+b\right)^3-\left(a-b\right)^3=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(=2b\left(b^2+3a^2\right)\)

27 tháng 7 2018

Chỗ dấu bằng thứ hai sai nên bạn làm cũng chưa đúng

x^6 -y^6 = (x^2-y^2)(x^4 +x^2 .y^2 + y^4)

Bạn hiểu ra chỗ sai của mình chưa.Chúc bạn học tốt.

27 tháng 7 2018

cho minh xin de

15 tháng 12 2019

sửa:\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\)

Áp dụng bđt AM-GM ta có:

\(\sqrt{\left(x+2y\right).1}\le\frac{x+2y+1}{2}\)

\(\sqrt{\left(y+2z\right).1}\le\frac{y+2x+1}{2}\)

\(\sqrt{\left(z+2x\right).1}\le\frac{z+2x+1}{2}\)

Cộng từng vế đẳng thức trên ta được:

\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\le\frac{3\left(x+y+z\right)+3}{2}=3\)

Dấu"="xảy ra \(\Leftrightarrow x+2y=1;y+2z=1;z+2x=1;x=y=z;x+y+z=1\)

                       \(\Leftrightarrow x=y=z=\frac{1}{3}\)

Vậy...

14 tháng 6 2018

Ý bạn là phân tích đa thức thành nhân tử hả.

\(x^3-y^3-z^3-3xyz\)

\(=\left(x^3-3x^2y+3xy^2-y^3\right)-z^3+3x^2y-3xy^2-3xyz\)

\(=\left(x-y\right)^3-c^3+3xy\left(x-y-z\right)\)

\(=\left(x-y-z\right)\left[\left(x-y\right)^2+\left(x-y\right)z+z^2\right]+3xy\left(x-y-z\right)\)

\(=\left(x-y-z\right)\left(x^2-2xy+y^2+xz-yz+c^2+3xy\right)\)

\(=\left(x-y-z\right)\left(x^2+y^2+xz-yz+c^2+xy\right)\)

15 tháng 7 2017

b) \(\left(x-1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)\)

\(=\left(x^3+3x^2+3x+1\right)-\left(x^3-3x^2+3x-1\right)-6\left(x^2-1\right)\)

\(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6\)

\(=6x^2-6x^2+1+1+6\)

\(=8\)

Vậy biểu thức trên k phụ thuộc vào biến.

15 tháng 7 2017

chế ơi chế lm cho e het ik che lm có 1 câu z