Tìm m để hàm số y = 1/3x^3 + ( m^2 - m +2) x x^2 + ( 3m^2 +1)x + m-5 dat cuc tieu tai x = -2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=3\left(m-1\right)x^2-6x-\left(m+1\right)\)
Hàm có cực đại và cực tiểu khi và chỉ khi \(y'=0\) có 2 nghiệm pb
\(\Leftrightarrow\left\{{}\begin{matrix}3\left(m-1\right)\ne0\\\Delta'=9+3\left(m-1\right)\left(m+1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m^2>-2\left(\text{luôn đúng}\right)\end{matrix}\right.\)
Vậy \(m\ne1\)
Đặt \(2\sqrt{x+1}+\sqrt{4-x}=t\Rightarrow t^2-4=3x+4+4\sqrt{-x^2+3x+4}\)
Ta có:
\(2\sqrt{x+1}+\sqrt{4-x}\le\sqrt{\left(4+1\right)\left(x+1+4-x\right)}=5\)
\(\sqrt{x+1}+\sqrt{x+1}+\sqrt{4-x}\ge\sqrt{x+1}+\sqrt{x+1+4-x}\ge\sqrt{5}\)
\(\Rightarrow\sqrt{5}\le t\le5\)
Phương trình trở thành:
\(t^2-4=mt\) \(\Leftrightarrow f\left(t\right)=t^2-mt-4=0\)
\(ac=-4< 0\Rightarrow pt\) luôn có 2 nghiệm trái dấu (nghĩa là đúng 1 nghiệm dương)
Vậy để pt có nghiệm thuộc \(\left[\sqrt{5};5\right]\Rightarrow x_1< \sqrt{5}\le x_2\le5\)
\(\Rightarrow f\left(\sqrt{5}\right).f\left(5\right)\le0\)
\(\Rightarrow\left(1-\sqrt{5}m\right)\left(21-5m\right)\le0\)
\(\Rightarrow\dfrac{\sqrt{5}}{5}\le m\le\dfrac{21}{5}\)
2.
Chắc đề đúng là "tìm m để giá trị nhỏ nhất của hàm số đạt giá trị lớn nhất"
Hàm bậc 2 có \(a=2>0\Rightarrow y_{min}=-\dfrac{\Delta}{4a}=-\dfrac{9\left(m+1\right)^2-8\left(m^2+3m-2\right)}{8}=-\dfrac{m^2-6m+25}{8}\)
\(\Rightarrow y_{min}=-\dfrac{1}{8}\left(m-3\right)^2-2\le-2\)
Dấu "=" xảy ra khi \(m-3=0\Rightarrow m=3\)
a.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)
\(\Leftrightarrow-5m-4< 0\)
\(\Leftrightarrow m>-\dfrac{4}{5}\)
b.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)
\(\Leftrightarrow-3m+7\le0\)
\(\Rightarrow m\ge\dfrac{7}{3}\)
c.
\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)
\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)
- Với \(m=-1\) không thỏa mãn
- Với \(m\ne-1\)
\(y'=3\left(m+1\right)x^2-6x-\left(m+1\right)\)
\(\Delta'=9+3\left(m+1\right)^2>0;\forall m\)
\(\Rightarrow\) Hàm luôn có cực đại, cực tiểu với \(m\ne-1\)
(Không thấy đáp án nào liên quan tới -1 cả)
\(y'=x^2-2\left(m-2\right)x+m^2-3m+2\)
a. Hàm đồng biến trên khoảng đã cho khi và chỉ khi:
\(y'\ge0\) ; \(\forall x>3\)
\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x>3\)
Ta có: \(\Delta'=\left(m-2\right)^2-\left(m^2-3m+2\right)=-m+2\)
TH1: \(\Delta'\le0\Leftrightarrow m\ge2\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-3m+2-4\left(m-2\right)+4\ge0\\2\left(m-2\right)< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-7m+4\ge0\\m< 4\end{matrix}\right.\) \(\Leftrightarrow m< 2\)
Kết hợp lại ta được hàm đồng biến trên \(\left(2;+\infty\right)\) với mọi m
b.
Hàm số đồng biến trên khoảng đã cho khi và chỉ khi:
\(y'\ge0\) ; \(\forall x< 0\)
\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x< 0\)
TH1: \(\Delta'=-m+2\le0\Leftrightarrow m\ge2\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\0\le x_1< x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1+x_2=2\left(m-2\right)>0\\x_1x_2=m^2-3m+2\ge0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Kết hợp lại ta được: \(m\ge2\)
a) Để hàm số \(y = (1 - 3m){x^2} + 3\) là hàm số bậc hai thì: \(1 - 3m \ne 0\) tức là \(m \ne \frac{1}{3}\)
Vậy \(m \ne \frac{1}{3}\) thì hàm số đã cho là hàm số bậc hai.
b) Để hàm số \(y = (4m - 1){(x - 7)^2}\) là hàm số bậc hai thì: \(4m - 1 \ne 0\) tức là \(m \ne \frac{1}{4}\)
Vậy \(m \ne \frac{1}{4}\) thì hàm số đã cho là hàm số bậc hai.
c) Để hàm số \(y = 2({x^2} + 1) + 11 - m\) là hàm số bậc hai thì: \(2 \ne 0\) và \(m \in \mathbb R\)
Vậy \(m \in \mathbb R\) thì hàm số đã cho là hàm số bậc hai.