chứng minh \(\sqrt{8-2\sqrt{15}-\sqrt{8+2\sqrt{15}}}=-2\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}= \sqrt{5-2\sqrt{3}.\sqrt{5}+3}-\sqrt{5+2\sqrt{3}.\sqrt{5}+3}\\ =\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}=-2\sqrt{3}\)
+) \(\left(\sqrt{4}-\sqrt{3}\right)^2=4-2\sqrt{4\cdot3}+3=7-2\sqrt{7}=\sqrt{49}-\sqrt{48}\)
+) \(2\sqrt{2}\left(2-3\sqrt{3}\right)+\left(1-2\sqrt{2}\right)^2+6\sqrt{6}\)
\(=4\sqrt{2}-6\sqrt{6}+9-4\sqrt{2}+6\sqrt{6}\)
\(=9\)
+) Sửa : \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
\(=\sqrt{5-2\sqrt{5}\cdot\sqrt{3}+3}-\sqrt{5+2\sqrt{5}\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
\(=-2\sqrt{3}\)
Sửa đề: Chứng minh \(\left(\sqrt{7+4\sqrt{3}}+\sqrt{8-2\sqrt{15}}\right)-\left(\sqrt{8+2\sqrt{15}}-\sqrt{7-4\sqrt{3}}\right)=\left(\sqrt{3}-1\right)^2\)
Ta có: \(VT=\left(\sqrt{7+4\sqrt{3}}+\sqrt{8-2\sqrt{15}}\right)-\left(\sqrt{8+2\sqrt{15}}-\sqrt{7-4\sqrt{3}}\right)\)
\(=\left(\sqrt{4+2\cdot2\cdot\sqrt{3}+3}+\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\right)-\left(\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{3}+3}-\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\right)\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left|2+\sqrt{3}\right|+\left|\sqrt{5}-\sqrt{3}\right|-\left|\sqrt{5}+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\)
\(=\left(2+\sqrt{3}\right)+\left(\sqrt{5}-\sqrt{3}\right)-\left(\sqrt{5}+\sqrt{3}\right)+\left(2-\sqrt{3}\right)\)
\(=2+\sqrt{3}+\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}+2-\sqrt{3}\)
\(=4-2\sqrt{3}\)
\(=3-2\cdot\sqrt{3}\cdot1+1\)
\(=\left(\sqrt{3}-1\right)^2=VP\)(đpcm)
4: \(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}\)
\(=2\sqrt{3}\)
4) \(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{5}+\sqrt{3}-\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}\)
5) \(\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{2}+\sqrt{3}+\sqrt{5}-\sqrt{3}=\sqrt{2}+\sqrt{5}\)
2: \(\dfrac{\sqrt{108}}{\sqrt{3}}=6\)
13: \(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}\)
\(=\sqrt{5}-\sqrt{3}-2\sqrt{5}+\sqrt{3}\)
\(=-\sqrt{5}\)
14: \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
=2
12.
\(\dfrac{\sqrt{108}}{\sqrt{3}}=\dfrac{\sqrt{36}.\sqrt{3}}{\sqrt{3}}=\sqrt{36}=6\)
13.
\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}-\sqrt{\left(2\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{3}-\sqrt{5}\right|-\left|2\sqrt{5}-\sqrt{3}\right|\)
\(=\sqrt{5}-\sqrt{3}-2\sqrt{5}+\sqrt{3}\)
\(=-\sqrt{5}\)
Bài 1
a) Đặt VT = A
<=> \(2\sqrt{2}A=\left(8+2\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\)
<=> \(2\sqrt{2}A=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
<=> \(2A=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^2\)
<=> 2A = \(\left(5-3\right)^2=4\)
<=> A = 2
b) Đặt VT = B
<=> \(2\sqrt{2}B=\left(10+2\sqrt{21}\right).\left(\sqrt{14}-\sqrt{6}\right)\sqrt{10-2\sqrt{21}}\)
<=> \(2\sqrt{2}B=\left(\sqrt{7}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right).\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
<=> \(2B=\left(\sqrt{7}+\sqrt{3}\right)^2.\left(\sqrt{7}-\sqrt{3}\right)^2=\left(7-3\right)^2=16\)
<=> B = 8
Bài 2
Đặt VT = A
<=> A2 = \(\dfrac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{2}\)
<=> A2 = \(\dfrac{2\sqrt{5}+2\sqrt{5-4}}{2}=\dfrac{2\sqrt{5}+2}{2}=\sqrt{5}+1\)
<=> \(A=\sqrt{\sqrt{5}+1}\)
\(a,\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\\ =\sqrt{\sqrt{5^2}+2\sqrt{5}.\sqrt{3}+\sqrt{3^2}}-\sqrt{\sqrt{5^2}-2\sqrt{5}.\sqrt{3}+\sqrt{3^2}}\\ =\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\\ =\left|\sqrt{5}+\sqrt{3}\right|-\left|\sqrt{5}-\sqrt{3}\right|\\ =\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}\\ =2\sqrt{3}\)
\(b,\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}\\ =\sqrt{\sqrt{2^2}+2.\sqrt{3}.\sqrt{2}+\sqrt{3^2}}+\sqrt{\sqrt{2^2}-2.\sqrt{3}.\sqrt{2}+\sqrt{3^2}}\\ =\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\\ =\left|\sqrt{2}+\sqrt{3}\right|+\left|\sqrt{2}-\sqrt{3}\right|\\ =\sqrt{2}+\sqrt{3}-\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
a) \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
\(=\sqrt{5-2\cdot\sqrt{5\cdot3}+3}-\sqrt{5+2\cdot\sqrt{5\cdot3}+1}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
\(=-2\sqrt{3}\)
b. \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{2+2\cdot\sqrt{2}\cdot\sqrt{3}+3}-\sqrt{3-2\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{2}\)
Bạn xem lại đề. Biểu thức trong căn thứ 2 âm nên biểu thức B không tồn tại. Có phải số 8 bạn nên sửa thành 9?
\(a,\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{3}+\sqrt{5}-\left(\sqrt{5}+1\right)=\sqrt{3}-1\\ b,=3-2\sqrt{2}-\left(3\sqrt{2}+1\right)=2-5\sqrt{2}\\ c,=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\\ d,=\sqrt{11}+1-\left(\sqrt{11}-1\right)=2\\ e,=\sqrt{7}-\sqrt{3}-\left(\sqrt{7}-\sqrt{2}\right)=\sqrt{2}-\sqrt{3}\)
đề sai