K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2023

2:

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)

 

9 tháng 5 2023

Đặt A = \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)

3A = 1 - \(\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)

4A = ( 1 - \(\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\) ) + ( \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) )

    = 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\) 

Đặt B = 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}\) 

3B = 3 - 1 + \(\dfrac{1}{3}-\dfrac{1}{3^2}\) + ... - \(\dfrac{1}{3^{98}}\)

4B = ( 3 - 1 + \(\dfrac{1}{3}-\dfrac{1}{3^2}\) + ... - \(\dfrac{1}{3^{98}}\) ) + ( 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}\) )

     = 3 - \(\dfrac{1}{3^{99}}\)

B = \(\dfrac{3}{4}-\dfrac{1}{3^{99}\cdot4}\)

⇒ 4A = \(\dfrac{3}{4}-\dfrac{1}{3^{99}\cdot4}\) - \(\dfrac{100}{3^{100}}\) 

A = \(\dfrac{3}{16}-\dfrac{1}{3^{99}\cdot4^2}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)

Vậy A < \(\dfrac{3}{16}\)

AH
Akai Haruma
Giáo viên
5 tháng 7 2021

Lời giải:

Gọi phân số vế trái là $A$. Gọi tử số là $T$. Xét mẫu số:
\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)

\(=1-\frac{1}{2}+1-\frac{1}{3}+1-\frac{1}{4}+....+1-\frac{1}{100}\)

\(=99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=100-(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100})\)

\(=\frac{1}{2}\left[200-(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100})\right]=\frac{1}{2}T\)

$\Rightarrow A=\frac{T}{\frac{1}{2}T}=2$ 

Ta có đpcm.

Giải:

Vì \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\) nên phần tử gấp 2 lần phần mẫu

Ta có:

\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)  

\(=\dfrac{2.\left[100-\left(\dfrac{3}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{100}\right)\right]}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)

\(=\dfrac{2.\left[\left(2-\dfrac{3}{2}\right)+\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{5}\right)+...+\left(1-\dfrac{1}{100}\right)\right]}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\) 

\(=\dfrac{2.\left(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{4}{5}+...+\dfrac{99}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\) 

\(=2\) 

Vậy \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\left(đpcm\right)\) 

Chúc bạn học tốt!

NV
1 tháng 3 2023

Đặt \(A=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)

\(\Rightarrow3A=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)

\(\Rightarrow A+3A=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)

\(\Rightarrow4A=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\) (1)

\(\Rightarrow12A=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{97}}-\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\) (2)

Cộng vế (1) và (2):

\(\Rightarrow16A=3-\dfrac{101}{3^{99}}-\dfrac{100}{3^{100}}\)

\(\Rightarrow16A< 3\)

\(\Rightarrow A< \dfrac{3}{16}\)

2 tháng 3 2023

Đặt `A` `=` `1/3 - 2/3^2+3/3^3 - 4/3^4+ ... + 99/3^99-100/3^100`
`=>3A=1 -2/3 +3/3^2 - 4/3^3+ ... - 100/3^99`
`=>4A=A+3A=1-1/3+1/3^2-1/3^3+...-1/3^99 - 100/3^100`
`=>12A=3.4A=3-1+1/3-1/3^2+...-1/3^98 - 100/3^99`
`=>16A=12A+4A=3-1/3^99-100/3^99-100/3^1...`
`=>16A=3-101/3^99-100/3^100`
`<=>A=3/16-(101/3^99+100/3^100)/16 < 3/16`
`=> A<3/16`

@Nae