5 Xác định các số nguyên n để ( n+2 ) : ( n-1 ) là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a,
-Ta có:
$B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$
-Vậy: B<A
b,$A=1+(\frac{1}{2})^2+...+(\frac{1}{100})^2$
$\Leftrightarrow A=1+\frac{1}{2^2}+...+\frac{1}{100^2}$
$\Leftrightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}$
$\Leftrightarrow A<1+\frac{1}{1}-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}$
$\Leftrightarrow A<1+1-\frac{1}{100}\Leftrightarrow A<2-\frac{1}{100}\Leftrightarrow A<2(đpcm)$
2,
a.
-Ta có:$\Rightarrow \frac{3x+7}{x-1}=\frac{3(x-1)+16}{x-1}=\frac{3(x-1)}{x-1}+\frac{16}{x-1}=3+\frac{16}{x-1}
-Để: 3x+7/x-1 nguyên
-Thì: $\frac{16}{x-1}$ nguyên
$\Rightarrow 16\vdots x-1\Leftrightarrow x-1\in Ư(16)\Leftrightarrow ....$
b, -Ta có:
$\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=1-\frac{7}{n+5}$
-Để: n-2/n+5 nguyên
-Thì: \frac{7}{n+5} nguyên
$\Leftrightarrow 7\vdots n+5\Leftrightarrow n+5\in Ư(7)\Leftrightarrow ...$
Xuân Tuấn Trịnh29 tháng 4 2017 lúc 9:10
a) Để A là phân số thì 5 không chia hết cho n-1 hay n-1 không phải Ư(5) mà Ư(5)={-5;-1;1;5}
Ta có bảng sau:
n−1≠n−1≠ | -5 | -1 | 1 | 5 |
n≠n≠ | -4 | 0 | 2 | 6 |
Vậy n≠{−4;0;2;6}≠{−4;0;2;6}thì A là phân số
n=0 => A=50−1=−550−1=−5
n=10 => A=510−1=59510−1=59
n=-2 => A=5−2−1=−535−2−1=−53
Để A là số nguyên =>5 chia hết cho n-1 <=>n-1 là Ư(5)
Từ bảng trên => n={-4;0;2;6} thì A nguyên
b) Do n là Số tự nhiên => n và n+1 là 2 số tự nhiên liên tiếp
=>n và n+1 nguyên tố cùng nhau
=>phân số nn+1nn+1tối giản(dpcm)
c)11⋅2+12⋅3+...+149⋅50=1−12+12−13+...+149−150=1−150<1(đpcm)
~hok tốt~
không thể là số lẻ vì khi đó có ít nhất số chẵn nên không thể là số nguyên tố. Dễ thấy với số là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với số là hợp số. Với dễ thấy cả số đều là số nguyên tố.
Dễ thấy là trong số đã cho có số chia hết cho . Thật thế số đã cho khi chia cho có cùng số dư với số mà trong số tự nhiên liên tiếp có số chia hết cho .
Với trong số đã cho có số chia hết cho và nên là hợp số.
Số duy nhất thỏa mãn là
Xem thêm tại đây nhé bạn : Tìm số n nguyên dương sao cho tất cả các số n+1;n+5;n+7;n+13;n+17;n+25;n+37 đều là số nguyên tố - Số học - Diễn đàn Toán học
Ta thấy: n phải là số chẵn vì trong dãy có phần dư của n là số lẻ (nếu là số lẻ thì các số trên chẵn ra hợp số)
Mà số nguyên tố chẵn duy nhất là 2 nên n = 2
Thay n = 2, ta có: n + 7 = 2 + 7 = 9 (loại vì là hợp số)
+) Với n = 4
Ta có: n + 5 = 4 + 5 = 9 (loại vì là hợp số)
+) Với n = 6
Với n = 6 thì tất cả các số trên đều là số nguyên tố (tm)
Theo nguyên lí Dirichle thì trong một phép chia cho 7 thì có nhiều nhất 6 số dư
Vậy ta dễ chứng minh để loại hết các số lớn hơn 6
Vậy n = 6 là nghiệm duy nhất cần tìm.
a, n+2 chia hết cho n-3
Suy ra (n-3)+5 chia hết cho n-3
Suy ra 5 chia hết cho n-3 vì n-3 chia hết cho n-3
suy ra n-3 \(\in\)Ư(5)={-1;-5;1;5}
Ta có bảng giá trị
n-3 | -1 | -5 | 1 | 5 |
n | 2 | -2 | 4 | 8 |
Vậy n={2;-2;4;8}
b, ta có Ư(13)={-1;-13;1;13}
ta có bảng giá trị
x-3 | -1 | -13 | 1 | 13 |
x | 2 | -10 | 4 | 16 |
Vậy n={2;-10;4;16}
c, ta có Ư(111)={-1;-111;;-3;-37;1;111;3;37}
ta có bảng giá trị
x-2 | -1 | -111 | -3 | -37 | 1 | 3 | 111 | 37 |
x | 1 | -99 | -1 | -39 | 3 | 5 | 113 | 39 |
Vậy n={1;-99;-1;-39;3;5;113;39}
Dể phân số \(\dfrac{7n-8}{2n-3}\) đạt giá trị lớn nhất thì :
\(2n-3\) đạt giá trị nhỏ nhất
Và phân số \(\dfrac{7n-8}{2n-3}\in Z\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n-3=0\Leftrightarrow n=\dfrac{2}{3}\left(loại\right)\\2n-3=1\Leftrightarrow n=2\left(tm\right)\end{matrix}\right.\)
Thay \(n=2\) ta có :
\(\dfrac{7n-8}{2n-3}=\dfrac{7.2-8}{2.2-3}=6\)
Vậy giá trị lớn nhất của phân số \(\dfrac{7n-8}{2n-3}=6\) khi \(n=2\)
\(\)Đặt:
\(A=\dfrac{7n-8}{2n-3}\)
\(MAX_A\Rightarrow A\in Z^+\Rightarrow2n-3\in Z^+\)
\(MAX_A\Rightarrow MIN_{2n-3}\)
\(\Rightarrow2n-3=1\Rightarrow2n=1+3\Rightarrow2n=4\Rightarrow n=2\)
\(\Rightarrow MAX_A=\dfrac{2.7-8}{2.2-3}=6\)
Vậy \(MAX_A=6\) khi \(n=2\)
B2 : n=1
vì nếu lớn hơn 1 thì có 5soos chia hết cho 2 và ít nhất 1 số chia hết cho3 là số lẻ
nếu n=0 thì có 4soos nguyên tố
nhắn đúng cho mình nhé
Ta có: \(\left\{{}\begin{matrix}p+e+n=115\\p=e\\p+e-n=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n=90\\p=e\\p+e+n=115\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=45\\p=e=35\end{matrix}\right.\)
\(KHNT:^{80}_{35}Br\)
\(\left\{{}\begin{matrix}2p+n=115\\2p-n=25\end{matrix}\right.\)\(\left\{{}\begin{matrix}P=E=Z=35\\N=45\end{matrix}\right.\)
=> Nguyên tử R có 35p. 35e, 45n
b) Tên: Brom (KHHH: Br)
NTK=A=N+P=45+35=80(đ.v.C)
Vì \(n+2⋮n-1\)
\(\Rightarrow\left(n-1\right)+3⋮n-1\)
mà \(n-1⋮n-1\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\inƯ\left(3\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{2;0;4;-2\right\}\)
Vậy \(n\in\left\{0;\pm2;4\right\}.\)
Để \(\dfrac{n+2}{n-1}\) nhận giá trị nguyên thì :
\(n+2\text{ }⋮\text{ }n-1\)
\(\Rightarrow n-\left(1+3\right)\text{ }⋮\text{ }n-1\)
\(\Rightarrow n-1+3\text{ }⋮\text{ }n-1\)
\(\Rightarrow\left(n-1\right)+3\text{ }⋮\text{ }n-1\)
Mà \(n-1\text{ }⋮\text{ }n-1\)
\(\Rightarrow3\text{ }⋮\text{ }n-1\)
\(\Rightarrow\left(n-1\right)\inƯ_{\left(3\right)}\)
\(\Rightarrow\left(n-1\right)\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n\in\left\{0;2;-2;4\right\}\)
Vậy \(\dfrac{n+2}{n-1}\) nhận giá trị nguyên khi \(n\in\left\{0;2;-2;4\right\}\)