K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2020

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được: 

\(AC^2=CH^2+AH^2\)

\(\Leftrightarrow AH^2=AC^2-CH^2=20^2-16^2=144\)

hay AH=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=\dfrac{AH^2}{HC}=\dfrac{12^2}{16}=9\left(cm\right)\)

Ta có: BC=BH+CH(H nằm giữa B và C)

nên BC=9+16=25(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=25^2-20^2=225\)

hay AB=15(cm)

Vậy: AB=15cm; AH=12cm; BC=25cm; BH=9cm

28 tháng 12 2020

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được: 

\(AC^2=BH^2+CH^2\)

\(\Leftrightarrow AC^2=5^2+12^2=169\)

hay AC=13(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=\dfrac{AH^2}{HC}=\dfrac{12^2}{5}=28.8\left(cm\right)\)

Ta có: BC=HB+HC(H nằm giữa B và C)

nên BC=28,8+5=33,8(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=33.8^2-13^2=973.44\)

hay \(AB=31.2cm\)

Vậy: AC=13cm; AB=31,2cm; BC=33,8cm; BH=28,8cm

28 tháng 12 2020

Áp dụng định lí Pytago vào ΔBAH vuông tại H, ta được: 

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow HB^2=AB^2-AH^2=30^2-24^2=324\)

hay HB=18(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=\dfrac{AH^2}{HB}=\dfrac{24^2}{18}=32\left(cm\right)\)

Ta có: BC=HB+HC(H nằm giữa B và C)

nên BC=18+32=50(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\LeftrightarrowÁC^2=BC^2-AB^2=50^2-30^2=1600\)

hay AC=40cm

Vậy: AC=40cm; CH=32cm; BC=50cm; BH=18cm

1 tháng 3 2016

xét 2 tam giác HBA và ABC 

H là góc chung

gC=gHAB

=>2 tam giác đồng dạng

\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB.AB=BH.BC\Rightarrow AB^2=BH.BC\)

a: Xét ΔABC vuông tại A có \(BC^2=AB^2+AC^2\)

=>\(BC^2=4^2+7,5^2=72,25\)

=>\(BC=\sqrt{72,25}=8,5\)

Xét ΔABC vuông tại A có \(cotB=\dfrac{BA}{AC}\)

=>\(cotB=\dfrac{4}{7,5}=\dfrac{8}{15}\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

Xét ΔABH vuông tại H có \(cotB=\dfrac{BH}{AH}\)

=>\(\dfrac{BH}{AH}=\dfrac{8}{15}\)

=>\(BH=\dfrac{8}{15}\cdot AH\)

\(AB^2=BH\cdot BC=\dfrac{8}{15}\cdot AH\cdot BC\)

a: Ta có: ΔABC vuông tại A

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{B}=60^0\)

Xét ΔABC vuông tại A có 

\(BC=AB:\sin\widehat{C}\)

\(=6:\dfrac{1}{2}=12\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

hay \(AC=6\sqrt{3}\left(cm\right)\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(HB\cdot HC=AH^2\left(1\right)\)

Xét tứ giác AEHF có

\(\widehat{EAF}=\widehat{AFH}=\widehat{AEH}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: AH=EF

hay \(AH\cdot EF=AH^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(HB\cdot HC=AH\cdot EF\)

a: \(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

BH=4^2/5=3,2cm

b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

c: ΔBAC đồng dạng với ΔBHA

=>BA/BH=BC/BA

=>BA^2=BH*BC

a: \(CB=\sqrt{4^2+3^2}=5\left(cm\right)\)

AH=4*3/5=2,4cm

BH=4^2/5=3,2cm

CD là phân giác

=>AD/AC=DB/BC

=>AD/3=DB/5=(AD+DB)/(3+5)=4/8=0,5

=>AD=1,5cm

b: Xet ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

c: Xét ΔBAC vuông tại A có AH là đường cao

nên AB^2=BH*BC

19 tháng 9 2021

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

16 tháng 12 2021

a: \(AH=4\sqrt{3}\left(cm\right)\)

HC=12cm

BC=16cm