Tìm x để A = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}>\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\hept{\begin{cases}x\ge1\\x\ne2\end{cases}}\)
\(A=\frac{\sqrt{x-1}+1}{\sqrt{x-1}-1}+\frac{1-\sqrt{x-1}}{\sqrt{x-1}+1}\)
\(=\frac{\sqrt{x-1}+1}{\sqrt{x-1}-1}-\frac{\sqrt{x-1}-1}{\sqrt{x-1}+1}\)
\(=\frac{\left(\sqrt{x-1}+1\right)^2-\left(\sqrt{x-1}-1\right)^2}{\left(\sqrt{x-1}-1\right)\left(\sqrt{x-1}+1\right)}\)
\(=\frac{\left(\sqrt{x-1}+1+\sqrt{x-1}-1\right)\left(\sqrt{x-1}+1-\sqrt{x-1}+1\right)}{x-1-1}\)
\(=\frac{2\sqrt{x-1}.2}{x-2}=\frac{4\sqrt{x-1}}{x-2}\)
\(A>2\Rightarrow\frac{4\sqrt{x-1}}{x-2}>2\left(1\right)\)
Xét 2 trường hợp (khi x - 2 > 0 hoặc khi x - 2 < 0)
+ Với \(1\le x< 2\)(nếu x nằm trong khoảng này thì x - 2 < 0) , (1) trở thành:
\(4\sqrt{x-1}< 2\left(x-2\right)\Rightarrow4\sqrt{x-1}< 2x-4\Rightarrow2\sqrt{x-1}< x-2\)
\(\Rightarrow4\left(x-1\right)< x^2-4x-4\Rightarrow x^2-8x>0\Rightarrow x\left(x-8\right)>0\)
\(\Rightarrow\hept{\begin{cases}x>0\\x-8>0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x>8\end{cases}\Rightarrow}x>8}\)
kết hợp với điều kiện: \(1\le x< 2\) ta suy ra k có giá trị x thỏa đề
+ Với x > 2 (x nằm trong khoảng này thì x - 2 > 0 nên khi nhân ta k đổi dấu) , (1) trở thành:
\(4\sqrt{x-1}>2\left(x-2\right)\Rightarrow4\sqrt{x-1}>2x-4\Rightarrow2\sqrt{x-1}>x-2\)
\(\Rightarrow4\left(x-1\right)>x^2-4x-4\Rightarrow x^2-8x< 0\Rightarrow x\left(x-8\right)< 0\)
- \(\hept{\begin{cases}x>0\\x-8< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< 8\end{cases}\Rightarrow}0< x< 8}\)
- \(\hept{\begin{cases}x< 0\\x-8>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x>8\end{cases}}}\)(vô lí)
=> 0 < x < 8 , kết hợp với điều kiện x > 2 ta suy ra 2 < x < 8
Vậy 2 < x < 8 thì thỏa đề
+ Với \(1\le x< 2\) (1) trở thành: \(4\sqrt{x-1}< 2\left(x-2\right)\Rightarrow2\sqrt{x-1}< x-2\)
\(\Rightarrow4\left(x-1\right)< x^2-4x+4\Rightarrow x^2-8x+8>0\)
\(\Rightarrow\orbr{\begin{cases}x< 4-2\sqrt{2}\\x>4+2\sqrt{2}\end{cases}}\) (cái này bấm máy nha)
kết hợp với điều kiện \(1\le x< 2\) ta suy ra \(1\le x< 4-2\sqrt{2}\)
+ Với x > 2 (1) trở thành \(4\left(x-1\right)>x^2-4x+4\Rightarrow x^2-8x+8< 0\)
\(\Rightarrow4-2\sqrt{2}< x< 4+2\sqrt{2}\)
kết hợp với điều kiện x > 2 ta suy ra \(2< x< 4+2\sqrt{2}\)
Hợp 2 trường hợp lại ta được: \(\orbr{\begin{cases}1\le x< 4-2\sqrt{2}\\2< x< 4+2\sqrt{2}\end{cases}}\) thì A > 2
ĐK: \(x>0;x\ne1\)
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(A>-1\) \(\Rightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}>-1\)
\(\Leftrightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}+1>0\) \(\Leftrightarrow\)\(\frac{2\sqrt{x}-1}{\sqrt{x}}>0\)
Do \(\sqrt{x}>0\) \(\Rightarrow\)\(2\sqrt{x}-1>0\)\(\Leftrightarrow\)\(2\sqrt{x}>1\)\(\Leftrightarrow\)\(\sqrt{x}>\frac{1}{2}\)\(\Leftrightarrow\)\(x>\frac{1}{4}\)
Vậy \(x>\frac{1}{4}\)\(\left(x\ne1\right)\)thì A > - 1
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
Ta có: \(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)\(=\left[\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right]:\frac{\sqrt{x}+1}{\left(\sqrt{x}\right)^2-2\sqrt{x}+1}\)
\(=\left[\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
Để \(A>-1\)thì \(\frac{\sqrt{x}-1}{\sqrt{x}}>-1\)\(\Leftrightarrow\sqrt{x}-1>-\sqrt{x}\)\(\Leftrightarrow2\sqrt{x}>1\)
\(\Leftrightarrow\sqrt{x}>\frac{1}{2}\)\(\Leftrightarrow x>\frac{1}{4}\)thoả mãn \(x\ne1\)
Vậy \(A>-1\)\(\Leftrightarrow x>\frac{1}{4}\)thoả mãn \(x\ne1\)
a)\(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\left(-\frac{4x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\)
\(=-\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right).\frac{4x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{4x\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{4\frac{x-1}{2\sqrt{x}}x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=-2\sqrt{x}\)
b) Tự làm nhé :v
Mk ko chắc
\(1,ĐKXĐ:x\ge0;x\ne4\)
\(A=\left(1+\frac{2}{\sqrt{x}}\right)\left(\frac{\sqrt{x}-2+\sqrt{x}+2-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)
\(A=\left(1+\frac{2}{\sqrt{x}}\right)\left(\frac{2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)
\(A=\left(1+\frac{2}{\sqrt{x}}\right)\left(\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)
\(A=\left(\frac{\sqrt{x}+2}{\sqrt{x}}\right)\left(\frac{2}{\sqrt{x}+2}\right)\)
\(A=\frac{2}{\sqrt{x}}\)
\(2,A>\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{\sqrt{x}}>\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{\sqrt{x}}-\frac{1}{2}>0\)
\(\Leftrightarrow\frac{4}{2\sqrt{x}}-\frac{\sqrt{x}}{2\sqrt{x}}>0\)
\(\Leftrightarrow\frac{4-\sqrt{x}}{2\sqrt{x}}>0\)
Do \(\sqrt{x}>0\Rightarrow2\sqrt{x}>0\)
\(\Rightarrow4-\sqrt{x}>0\)
\(\Leftrightarrow-\sqrt{x}>-4\)
\(\Leftrightarrow\sqrt{x}< 4\)
\(\Leftrightarrow x< 16\)
Kết hợp với ĐKXĐ thì \(0\le x< 16\)và \(x\ne4\)
\(3,A=-2\sqrt{x}+5\)
\(\Leftrightarrow\frac{2}{\sqrt{x}}=-2\sqrt{x}+5\)
\(\Leftrightarrow\sqrt{x}\left(-2\sqrt{x}+5\right)=2\)
\(\Leftrightarrow-2x+5\sqrt{x}-2=0\)
\(\Leftrightarrow-2x+2.5\sqrt{x}+2.5\sqrt{x}-2=0\)
\(\Leftrightarrow\left(-2x+2.5\sqrt{x}\right)+\left(2.5\sqrt{x}-2\right)=0\)
Đến đây thì mình chịu
Bạn tự giải nốt nhé
HỌC TỐT
a) Ta có:
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right)\div\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
\(P=\frac{x-1}{\left(\sqrt{x}-1\right)\sqrt{x}}\div\frac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\sqrt{x}}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(P=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{x-1}{\sqrt{x}}\)
b) Ta có: \(P>0\)
\(\Leftrightarrow\frac{x-1}{\sqrt{x}}>0\)
\(\Leftrightarrow\frac{\left(x-1\right)\sqrt{x}}{x}>0\)
\(\Rightarrow\left(x-1\right)\sqrt{x}>0\)
\(\Rightarrow\hept{\begin{cases}x-1>0\\\sqrt{x}>0\end{cases}}\Rightarrow x>1\)
Vậy khi \(x>1\Leftrightarrow P>0\)
c) Ta có: \(P=6\)
\(\Leftrightarrow\frac{x-1}{\sqrt{x}}=6\)
\(\Leftrightarrow x-1=6\sqrt{x}\)
\(\Leftrightarrow\left(x-1\right)^2=36x\)
\(\Leftrightarrow x^2-38x+1=0\)
\(\Leftrightarrow\left(x^2-38x+361\right)-360=0\)
\(\Leftrightarrow\left(x-19\right)^2-\left(6\sqrt{10}\right)^2=0\)
\(\Leftrightarrow\left(x-19-6\sqrt{10}\right)\left(x-19+6\sqrt{10}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-19-6\sqrt{10}=0\\x-19+6\sqrt{10}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=19+6\sqrt{10}\\x=19-6\sqrt{10}\end{cases}}\)
Điều kiện: x>0
\(\frac{\sqrt{x}+1}{\sqrt{x}-1}>\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{1}{2}>0\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}-1}{2\left(\sqrt{x}-1\right)}>0\)
\(\Leftrightarrow\frac{\sqrt{x}+1-\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}>0\)
\(\Leftrightarrow\frac{2}{2\left(\sqrt{x}-1\right)}>0\)
\(\Leftrightarrow\frac{1}{\sqrt{x}-1}>0\)
mà 1>0
nên \(\sqrt{x}-1>0\)
\(\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)