cho tam giác cân ABC, đường cao AH, góc đáy bằng x
CMR: \(Sabc=\frac{h^2}{4.sinx.cosx}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều cần CM chỉ xảy ra khi tam giác ABC đều thôi.Cho mình sửa lại đề bài nha.
Ta có: \(\frac{h^2}{4\sin x\cos x}=\frac{h^2}{4.\frac{h}{AB}.\frac{BH}{AB}}=\frac{AB^2.h}{4BH}=\frac{BC^2.h}{2BC}=\frac{1}{2}.BC.h=S_{ABC}\)
ta có AB^2=BC^2 (tam giác ABC đều)
=>2.AH.AB^2=2.AH.BC^2
=>(AH.AB^2)/(2BC)=(AH.BC)/(2)
=>AH^2.(AB^2/(4.AH.BH))=Sabc
=>AH^2/((4.AH.BH)/AB^2)=Sabc
=>AH^2/(4 AH/AB.BH/AB)=Sabc
=>AH^2/(4.sinx.cosx)=Sabc
Vậy \(Sabc=\frac{h^2}{4.sinx.cosx}\)
Gọi H là chiều dài vuông góc của S trên BC.
(SBC)_I_(ABC)
(SBC) \(\cap\) (ABC) = BC
SH \(\subset\) (SBC)
SH _I_ BC
SH là đường cao hình chóp S.ABC
.Ta có : SH = SB sinSBC = \(a\sqrt{3}\)
S.ABC = 1/2 BA . BC
V.S.ABC = 1/3 SH . S.ABC 2a3\(\sqrt{3}\)