Mp Oxy, Cho hvuông ABCD có C(3;-3). Gọi E thuộc cạnh BC, AE cắt CD tại F, DE cắt BF tại G. Biết G\(\left(\dfrac{1}{2};-1\right)\)và E\(\left(\dfrac{-1}{2};\dfrac{1}{2}\right)\) và A thuộc đuờng thẳng d: 2x-5y+12=0. Tìm tọa độ B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{GB}=\left(4;\dfrac{28}{3}\right)\)
Gọi \(D\left(x;y\right)\) \(\Rightarrow\overrightarrow{DG}=\left(-x;-\dfrac{13}{3}-y\right)\)
Gọi O là tâm hbh \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{DG}=\dfrac{2}{3}\overrightarrow{DO}\\\overrightarrow{DO}=\overrightarrow{OB}\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{DG}=\dfrac{1}{3}\overrightarrow{DB}=\dfrac{1}{2}\overrightarrow{GB}\)
\(\Rightarrow\left\{{}\begin{matrix}-x=\dfrac{1}{2}.4\\-\dfrac{13}{3}-y=\dfrac{1}{2}.\dfrac{28}{3}\end{matrix}\right.\) \(\Rightarrow D\left(-2;-9\right)\)
bạn ơi đáp án của nó là D(-2;-9). bạn giúp mk giải vs
Sửa đề: C(2;2)
\(\overrightarrow{AB}=\left(6;-10\right)\)
\(\overrightarrow{DC}=\left(-3;5\right)\)
Vì vecto AB=-2vecto DC
nên AB//DC
=>ABCD là hình thang
* Gọi M, N lần lượt là trung điểm của AB và CD
Khi đó, MN vuông AB,CD; IM=MA=MB, IN=ND=NC
IN=d(I, CD)= => IC=ID=
Đường tròn (C) tâm I, bán kính R=IC có phương trình:
* Tọa độ C,D là nghiệm của hệ 2 phương trình: và x-3y-3=0
=> y=1 or y=-1 Vì C có hoành độ dương nên C(6,1) và D(0,-1)
* S=45/2 <=> 1/2. MN.(AB+CD)=45/2
<=> MN(2IM+2IN)=45
<=> MN^2=45/2 => MN=
=> IM=MN-IN=
Mà AB//CD => =>
vói => B(3,5) và C(6,1)
Vậy BC: 4x+3y-27=0
*) giả sử điểm D có tọa độ là \(D\left(x_D;y_D\right)\)
\(\Rightarrow\overrightarrow{DC}\left(1-x_D;-1-y_D\right)\) và \(\overrightarrow{AB}\left(-5;-1\right)\)
ta có : ABCD là hình bình hành khi và chỉ khi \(\overrightarrow{DC}=\overrightarrow{AB}\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-x_D=-5\\-1-y_D=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_D=6\\y_D=0\end{matrix}\right.\)
vậy điểm D sao cho tứ giác ABCD là hình bình hành có tọa độ là \(D\left(6;0\right)\)
*) ý tiếp theo mình bó tay
ta có : tứ giác ABCD là hình bình hành \(\Rightarrow\) không thể nào ABCD thẳng hàng