12 Tìm các số nguyên a, sao cho: (a2 - 1).(a2 - 4).(a2 - 7).(a2 - 10) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chon dai di thoi
a1=1
a2=3
=>d3=2
d1=a1-a3 de sai roi a1<a3 khong co d1
Bài 1:
uses crt;
var a:array[1..1000000]of longint;
i,n,x:longint;
begin
clrscr;
write('Nhap n='); readln(n);
for i:=1 to n do
begin
write('A[',i,']='); readln(a[i]);
end;
write('Nhap x='); readln(x);
for i:=1 to n do
if a[i]<>x then write(a[i]:4);
readln;
end.
help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!help me!
Ta có :
\(a^2-1>a^2-4>a^2-7>a^2-10\left(a\in Z\right)\)
Biểu thức A có tích là 1 số < 0
\(\Leftrightarrow\) Phải có 1 số < 0 và 3 số > 0 hoặc 3 số < 0 và 1 số > 0
TH1 : \(a^2-10< 0\)
\(\Leftrightarrow a=0;1;2;3;-1;-2;-3\)
\(TH2:a^2-10< a^2-7< a^2-4< 0\)
\(\Leftrightarrow a=1;0;-1\)
Vậy ...............................
Nhận thấy VT là tích của 4 thừa số \(\Rightarrow VT< 0\) khi có 1 thừa số âm hoặc có 3 thừa số âm.
Mặt \(\ne a^2-1>a^2-4>a^2-7>a^2-10.\)
\(TH1:\) Nếu VT có 1 thừa số âm thì:
\(\left\{{}\begin{matrix}a^2-10< 0\\a^2-7>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2< 10\\a^2>7\end{matrix}\right.\Rightarrow7< a^2< 10\left(1\right)\)
Mà \(a\in Z\Rightarrow a^2\in Z\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left[{}\begin{matrix}a^2=8\left(loại\right)\\a^2=9\Rightarrow a=\pm3\end{matrix}\right.\)
\(TH2:\) Nếu \(VT\) có 3 thừa số âm thì:
\(\left\{{}\begin{matrix}a^2-1>0\\a^2-4< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2>1\\a^2< 4\end{matrix}\right.\Rightarrow1< a^2< 4\)
mà a2 là số chính phương \(\Rightarrow\) loại
Vậy \(a=\pm3.\)