a, CMR nếu p và p^2+8 là các số nguyên tố thì p^2+2 cũng là số nguyên tố
b, Cho a,b,c khác 0, thỏa mãn a+b+c= abc và 1/a+1/b+1/c=2. CMR 1/a^2+ 1/b^2+1/c^2= 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3
*)\(b^2+c^2=a^2\)
\(\Leftrightarrow b^2=a^2-c^2\)
\(\Leftrightarrow b=\sqrt{a^2-c^2}\)
Ta có: \(\sqrt{a^2-c^2}>c\Leftrightarrow a^2-c^2>c^2\)
\(\Leftrightarrow a^2>2c^2\)(luôn đúng)
=> c<b
*) \(a^2=b^2+c^2\Leftrightarrow\hept{\begin{cases}c=3\\b=4\\a=5\end{cases}\Leftrightarrow c=b+1}\)
Bài 2:
Ta có: \(a+b+c=2\)
\(\Leftrightarrow\left(a+b+c\right)^2=4\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)
\(\Leftrightarrow2\left(ab+bc+ca\right)=2\)
\(\Rightarrow ab+bc+ca=1\)
Thay vào ta được: \(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
Tương tự CM được: \(b^2+1=\left(b+a\right)\left(b+c\right)\) và \(c^2+1=\left(c+a\right)\left(c+b\right)\)
=> \(M=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
=> đpcm
Câu b :
Ta có :
\(a+b+c=abc\)
\(\Leftrightarrow1=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\)
\(\Leftrightarrow2=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\Leftrightarrow4=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\) \(+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)
\(\)\(\Rightarrow\) \(\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+2=4\)
\(\Rightarrow\) \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\left(đpcm\right)\)