K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

VT = \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}+\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}+\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}+\dfrac{\sqrt{3}-1}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{2}\left(\sqrt{6}\right)}{\sqrt{2}}=\sqrt{6}\) = VP (đpcm)

21 tháng 7 2019

a) \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)

b) \(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}=\sqrt{15}\)

12 tháng 1 2021

3 < 4

⇒ 3 < 22 (1)

1 < 2

⇒ 1 < \(\sqrt{2}\)

⇒ 2 < 1 + \(\sqrt{2}\)

⇒ 22 < 21 +\(\sqrt{2}\) (2)

Từ (1), (2) => Đpcm

 

AH
Akai Haruma
Giáo viên
29 tháng 10 2023

Nếu chứng minh $\sqrt{x}+\sqrt{x+1}=1$ thì không có đủ cơ sở để cm bạn nhé. Bạn viết lại đề hoặc bổ sung thêm điều kiện để mọi người trợ giúp tốt hơn.