Theo kế hoạch, một phân xưởng cần lắp ráp 80 ô tô trong khoảng thời gian nhất định. Do cải tiến kĩ thuật, phân xưởng đã lắp vượt mức 4 ô tô mỗi ngày nên chẳng những hoàn thành kế hoạch sớm 2 ngày mà còn lắp vượt mức 4 ô tô. Hỏi theo kế hoạch, mỗi ngày phân xưởng phải lắp bao nhiêu ô tô?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi năng suất dự định của phân xưởng là x (sản phẩm/ ngày) (\(x\in N^{\circledast}).\)
Số lượng sản phẩm dự định là 10x (sản phẩm).
Thời gian thực tế xưởng hoàn thành là 10 - 2 = 8 (ngày).
Năng suất dự định của phân xưởng là x + 20 (sản phẩm).
Số lượng sản phẩm thực tế là 8(x + 20) = 8x + 160 (sản phẩm).
Vì số lượng sản phẩm thực tế vượt mức 40 sản phẩm so với dự định, nên ta có PT:
8x + 160 - 40 = 10x.
\(\Leftrightarrow x=60\left(TM\right).\)
gọi số sản phẩ mỗi ngày là x(sản phẩm)(0<x<1100,x\(\in N\))
gọi thời gian làm dự định là y(ngày)(y>0)
=>hệ pt:\(\left\{{}\begin{matrix}xy=1100\\y-\dfrac{1100}{x+5}=2\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}y=\dfrac{1100}{x}\\\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\left(1\right)\end{matrix}\right.\)
*giải pt(1)\(=>\left\{{}\begin{matrix}x=50\left(TM\right)\\x=-55\left(loai\right)\end{matrix}\right.\)
Vậy....
Gọi số sản phẩm họ làm trong 1 ngày theo kế hoạch là x
Gọi số sản phẩm họ làm trong 1 ngày thực tế là y
(sản phẩm/ngày; x; y \(\in N\)*)
Do thực tế, mỗi ngày họ vượt mức 5 sản phẩm => Ta có phương trình:
y - x = 5 (1)
Thời gian họ sản xuất theo kế hoạch là \(\dfrac{1100}{x}\) (ngày)
Thời gian họ sản xuất thực tế là \(\dfrac{1100}{y}\) (ngày)
Do phân xưởng đó hoàn thành kế hoạch sớm hơn 2 ngày => Ta có phương trình:
\(\dfrac{1100}{x}-\dfrac{1100}{y}=2\)
<=> \(\dfrac{1100y-1100x-2xy}{xy}=0\)
<=> \(1100\left(y-x\right)-2xy=0\)
<=> \(5500-2xy=0\)
<=> \(xy=2750< =>x=\dfrac{2750}{y}\)
Thay x = \(\dfrac{2750}{y}\) vào phương trình (1), ta có:
\(y-\dfrac{2750}{y}=5\)
<=> \(y^2-5y-2750=0\)
<=> (y-55)(y+50) = 0
<=> \(\left[{}\begin{matrix}y=55\left(c\right)\\y=-50\left(l\right)\end{matrix}\right.\)
<=> x = 50 (c)
Theo kế hoạch, mỗi ngày phân xưởng sản xuất được 50 sản phẩm
Goi số ô tô phân xưởng láp ráp mỗi ngày theo kế hoach là x (ô tô) với x nguyên dương
Goi số ngày phân xưởng dư đinh láp ráp xong 80 ô tô theo kế hoach là y (ngày) , y >0
Theo đề bài ta có x.y=80
Do cải tiến kĩ thuật, phân xương đã lắp vượt quá 4 ô tô mỗi ngày nên chẳng những hoàn thành kết hoạch sớm 2 ngày mà còn lắp vượt mức 4 ô tô nên ta có
(x+4).(y-2) =80+4=84
Nên ta có hê phương trình
Giải phương trình (*) bằng phương pháp tính denta. ta đươc hai nghiêm là y=8 (nhận) hay y=-5 (không thỏa điều kiên --> loại)
Với y=8 mà ta có xy=80 --> x=80/8 =10 (thỏa điều kiên)
Vây theo kế hoach mỗi ngày phân xưởng phải lắp ráp 10 ô tô
Gọi x là sản ppham xưởng sản xuất trong 1 ngày theo kế hoạch (x>0)
=>Số ngày theo kế hoạch là :\(\frac{110}{x}\)
Số ngày thực tế là \(\frac{1100}{x+5}\)theo gia thiet cua bai toan ta co :
\(\frac{1100}{x}-\frac{1100}{x+5}=2\)
<=>1100(x+5)-1100x=2x(x+5)
<=>2x^2+10x-5500=0
<=>x=50hay x=-55 loai
Vậy theo kế hoạch mỗi ngày phân xưởng phải sản xuất là 50 sản phẩm
Gọi số sản phẩm mà phân xưởng làm trong 1 ngày là x ( x > 0 )
=> Số ngày quy định = \(\frac{1100}{x}\)( ngày )
Mỗi ngày phân xưởng sản xuất vượt mức 5 sản phẩm
=> Số ngày hoàn thành = \(\frac{1100}{x+5}\)( ngày )
Vì thế kế hoạch hoàn thành sớm hơn quy định 2 ngày
=> Ta có phương trình : \(\frac{1100}{x}-\frac{1100}{x+5}=2\)
\(\Leftrightarrow\frac{1100\left(x+5\right)}{x\left(x+5\right)}-\frac{1100\cdot x}{x\left(x+5\right)}=\frac{2x\left(x+5\right)}{x\left(x+5\right)}\)
\(\Leftrightarrow1100x+5500-1100x=2x^2+10x\)
\(\Leftrightarrow2x^2+10x-1100x-5500+1100x=0\)
\(\Leftrightarrow2x^2+10x-5500=0\)
\(\Delta'=b'^2-ac=5^2-2\cdot\left(-5500\right)=25+11000=11025\)
\(\Delta'>0\)nên phương trình đã cho có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-5+\sqrt{11025}}{2}=50\\x_2=\frac{-b-\sqrt{\Delta'}}{a}=\frac{-5-\sqrt{11025}}{2}=-55\end{cases}}\)
x > 0 => x = 50
Vậy theo kế hoạch , mỗi ngày phân xưởng sản xuất 50 sản phẩm
Giải
Gọi số sản phẩm mỗi ngày dự định làm là: aa
Số sản phẩm sự định là: 10a
Vì do cải tiến kĩ thuật mỗi ngày phân xưởng sx nhiều hơn dự định 20 sp nên đã hoàn thành trước 2 ngày mà còn vượt mức 40 sản phẩm
⇒ (a+20).(10−2)=10a+40
⇔ a=80
Hok Tốt !
# mui #
Gọi số sản phẩm theo kế hoạch 1 ngày phân xưởng phải sx là x (sản phẩm) . ĐK 0 < x < 1100
Thời gian hoàn thành kế hoạch theo quy định là \(\frac{1100}{x}\)(ngày)
Số sản phẩm mỗi ngày xưởng thực hiện là x + 5 (sản phẩm)
Thời gian xưởng thực hiện là \(\frac{1100}{x+5}\)(ngày)
Vì xưởng hoàn thành kế hoạch sớm hơn quy định 2 ngày , ta có pt
=>\(\frac{1100}{x}-2=\frac{1100}{x+5}\)
=>\(1100\left(x+5\right)-2x\left(x+5\right)=1100x\)
<=>\(2x^2+10x-5500=0\)
=>\(\orbr{\begin{cases}x_1=50\left(tm\right)\\x_2=-55\left(k^0tm\right)\end{cases}}\)
Vậy theo kế hoạch mỗi ngày xưởng phải sx 50 sản phẩm
Goi số ô tô phân xưởng láp ráp mỗi ngày theo kế hoach là x (ô tô) với x nguyên dương
Goi số ngày phân xưởng dư đinh láp ráp xong 80 ô tô theo kế hoach là y (ngày) , y >0
Theo đề bài ta có x.y=80
Do cải tiến kĩ thuật, phân xương đã lắp vượt quá 4 ô tô mỗi ngày nên chẳng những hoàn thành kết hoạch sớm 2 ngày mà còn lắp vượt mức 4 ô tô nên ta có
(x+4).(y-2) =80+4=84
Nên ta có hê phương trình
Giải phương trình (*) bằng phương pháp tính denta. ta đươc hai nghiêm là y=8 (nhận) hay y=-5 (không thỏa điều kiên --> loại)
Với y=8 mà ta có xy=80 --> x=80/8 =10 (thỏa điều kiên)
Vây theo kế hoach mỗi ngày phân xưởng phải lắp ráp 10 ô tô
pt là gì