K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

a) \(\left(x^4+2x^3+10x-25\right):\left(x^2+5\right)\)

\(=\left[\left(2x^3+10x\right)+\left(x^4-25\right)\right]:\left(x^2+5\right)\)

\(=\left[2x\left(x^2+5\right)+\left(x^2-5\right)\left(x^2+5\right)\right]:\left(x^2+5\right)\)

\(=\left(x^2+5\right)\left(x^2+2x-5\right):\left(x^2+5\right)\)

\(=x^2+2x-5\)

18 tháng 5 2019

\(\frac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)

\(=\frac{x^2\left(3x^2-2x+1\right)-2x\left(3x^2-2x+1\right)-5\left(3x^2-2x+1\right)}{3x^2-2x+1}\)

\(=\frac{\left(3x^2-2x+1\right)\cdot\left(x^2-2x-5\right)}{3x^2-2x+1}\)

\(=x^2-2x-5\)

18 tháng 5 2019

\(\frac{2x^3-9x^2+19x-15}{x^2-3x+5}\)

\(=\frac{2x\left(x^2-3x+5\right)-3\left(x^2-3x+5\right)}{x^2-3x+5}\)

\(=\frac{\left(x^2-3x+5\right)\left(2x-3\right)}{x^2-3x+5}\)

\(=2x-3\)

29 tháng 6 2017

a)\(\left(x^2-3x+2\right)\left(-2x-5\right)=-2x^3-5x^2+6x^2+15x-4x-10=-2x^3+x^2+11x-10\)

b) \(\left(3x^4-8x^3-10x^2+8x-5\right):\left(3x^2-2x+1\right)=x^2-2x-5\)

29 tháng 6 2017

giải rõ hơn đi

9 tháng 12 2018

nhầm chỗ rồi

9 tháng 12 2018

ờ đúng r ha. Mk chỉnh nhầm, xin lỗi

1:

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-2\right)=0\)

=>x-3=0 hoặc \(\sqrt{x+3}=2\)

=>x=3 hoặc x+3=4

=>x=1(loại) hoặc x=3(nhận)

2:

\(\Leftrightarrow\left(\sqrt{4x+1}-\sqrt{3x-4}\right)^2=1\)

=>\(4x-1+3x-4-2\sqrt{\left(4x+1\right)\left(3x-4\right)}=1\)

=>\(\sqrt{4\left(4x+1\right)\left(3x-4\right)}=7x-6\)

=>4(12x^2-16x+3x-4)=(7x-6)^2

=>49x^2-84x+36=48x^2-52x-16

=>-84x+36=-52x-16

=>-32x=-52

=>x=13/8

3: =>\(\sqrt{\left(x-5\right)^2}=5-x\)

=>|x-5|=5-x

=>x-5<=0

=>x<=5

4: \(\Leftrightarrow\left|x-4\right|=x+2\)

=>\(\left\{{}\begin{matrix}x>=-2\\\left(x-4\right)^2=\left(x+2\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\x^2-8x+16=x^2+4x+4\end{matrix}\right.\)

=>x>=-2 và -8x+16=4x+4

=>x=1

NV
1 tháng 4 2020

a/ \(\left(2x-3\right)\left(3x-4\right)\left(5x+2\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}-\frac{2}{3}< x< \frac{4}{3}\\x>\frac{3}{2}\end{matrix}\right.\)

b/ \(\Leftrightarrow24x^2-10x-25< 0\)

\(\Rightarrow-\frac{5}{6}< x< \frac{5}{4}\)

c/ \(\frac{4x\left(3x+2\right)}{2x+5}>0\Rightarrow\left[{}\begin{matrix}-\frac{5}{2}< x< -\frac{2}{3}\\x>0\end{matrix}\right.\)

d/ \(\Leftrightarrow\frac{3x+2}{2x-5}-\frac{2x-5}{3x+2}\ge0\)

\(\Leftrightarrow\frac{\left(3x+2\right)^2-\left(2x-5\right)^2}{\left(2x-5\right)\left(3x+2\right)}\ge0\)

\(\Leftrightarrow\frac{\left(5x-2\right)\left(x+7\right)}{\left(2x-5\right)\left(3x+2\right)}\ge0\Rightarrow\left[{}\begin{matrix}x\le-7\\-\frac{2}{3}< x\le\frac{2}{5}\\x>\frac{5}{2}\end{matrix}\right.\)

5 tháng 4 2018

1) \(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)

\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)

\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

2)       \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

      +

          \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)+B\left(x\right)=x^4+3x^3-x^2-4x+\frac{3}{7}\)

                \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

-

                \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)-B\left(x\right)=5x^4-13x^3-15x^2-16x+1\)