x^6-2005x^5+2005^4-2005x^3+2005x^2-2005x+2005 với x= 2004
giúp mk vs mk đang cần gấp
Thanks!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có vẻ như đề sai ở số hạng thứ 2, phải là "$2005x^7$"
---------------------------------
Đặt $2005=x+1$. Ta có :
$A=x^8-(x+1)x^7+(x+1)x^6-(x+1)x^5+...-(x+1)x+(x+1)$
$=>A=x^8-x^8-x^7+x^7+x^6-x^6-x^5+...-x^2-x+x+1$
$=>A=1$
Vì x = 2004
=> x + 1 = 2005
Thay vào A ta có : \(\text{A = }x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-\left(x+1\right)x^5+.....-\left(x+1\right)x+\left(x+1\right)\)
\(\Rightarrow A=x^8-x^8-x^7+x^7+x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^2-x^2-x+x+1\)
\(\Rightarrow A=1\)
Muốn viết tất cả các số tự nhiên từ 100 đến 999 phải dùng hết bao nhiên chữ số 5?
giải
ta có 100 chia hết cho 5
và số lớn nhất chia hết cho 5 trong dãy số này là:
995
vì cứ mỗi số chia hết cho 5 thì cách 5 đơn vị thì lại là một số chia hết cho 5
nên
từ 100-995 có số chữ số 5 là:
(995-100):5+1=180(số)
đáp số:180 số
đúng thì thanks mình nhé!
Đề sai nha bn!!!
\(x^8-2005x^7+2005x^6-2005x^5+...-2005x+2005\)
Vì x = 2004 => x + 1 = 2005
\(\Rightarrow x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-\left(x+1\right)x^5+...-\left(x+1\right)x+\left(x+1\right)\)
\(=x^8-x^8-x^7+x^7+x^6-x^6-x^5+...-x^2-x+x+1\)
\(=1\)
=.= hok tốt!!
a) Đặt \(u=\sqrt{x^2+1}\left(u>0\right)\Rightarrow u^2-1=x^2\)
Phương trình trở thành :
\(2u^2+6x-\left(2x+6\right)t=0\)
\(\Rightarrow\Delta_t=\left(2x+6\right)^2-48x=\left(2x-6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{2x+6-2x+6}{4}=3\\t=\dfrac{2x+6+2x-6}{4}=x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=3\\\sqrt{x^2+1}=x\end{matrix}\right.\)
đến đây thì ez rồi
c) Ta có :
\(2\sqrt{x^2-4x+5}=2\sqrt{\left(x-2\right)^2+1}\ge2\)
\(\sqrt{\dfrac{1}{4}x^2-x+1+4}=\sqrt{\left(\dfrac{1}{2}x-1\right)^2+4}\ge2\)
\(\Rightarrow2\sqrt{x^2-4x+5}+\sqrt{\dfrac{1}{4}x^2-x+5}\ge4\)
ta lại có: \(-4x^2+16x-12=-4\left(x^2-4x+4\right)+4\le4\)
\(\left\{{}\begin{matrix}VP\ge4\\VT\le4\end{matrix}\right.\)
Dấu bằng xảy ra khi x = 2
vậy x=2 là nghiệm của phương trình
a) \(\sqrt{3x-4}\) + \(\sqrt{4x+1}\) = \(-16x^2 - 8x +1\) với
ĐKXĐ :
- Vế trái \(x \ge \frac{4}{3}\)
- Vế phải : \(-16x^2 - 8x +1\) \(\ge 0\) \(\Leftrightarrow \) \(x \le \frac{\sqrt{2}-1}{4}\) hoặc \(x \le \frac{-\sqrt{2}-1}{4}\)
Hai điều kiện trái ngược nhau
Vậy phương trình vô nghiệm .
Đặt 2005 = x +1 . Ta có :
x6 - (x + 1 )x5 + ( x + 1 )x4 - (x + 1 )x3 + ( x + 1 )x2 - (x + 1)x + (x + 1)
= x6 - x6 - x5 + x5 + x4 - x4 - x3 + x3 + x2 - x2 -x + x + 1
= 1
thanks!