K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

Phân tích vế trái ta được

2(x2 + y2 + z2 − (xy + yz + zx))2(x2 + y2 + z2 − (xy + yz + zx))

Phân tích vế phải ta được

6(x2 + y2 + z2 − (xy + yz + zx))6(x2 + y2 + z2 − (xy + yz + zx))

Vì VT = VP nên VP - VT=0

4(x2 + y2 + z2 − (xy + yz + zx)) = 0

2(2 (x2 + y2 + z2 − (xy + yz + zx))) = 0

→2((x − y)2 + (y − z)2 + (z − x)2) = 0

→(x − y)2 + (y − z)2 + (z − x)2 = 0

→(x − y)2 = 0; (y − z)2 = 0; (z − x)2 = 0→x = y = z

1 tháng 3 2020

\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)

\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)

\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)

15 tháng 10 2017

\(HPT\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{y}+\frac{1}{z}\right)^2=3+\frac{1}{x}+\frac{1}{x^2}\\..\\...\end{cases}}\)

đến đây cộng vế 3 PT ta sẽ tính được \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) khi đó thay vào PT đầu giải

15 tháng 10 2017

Xét (x,y,z)=(0,0,m),(0,n,0),(p,0,0) là nghiệm của hệ(m,n,p\(\in\)R)

Xét xyz\(\ne\)0

hpt\(\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{y}+\frac{1}{z}\right)^2\\\left(\frac{1}{z}+\frac{1}{x}\right)^2\\\left(\frac{1}{x}+\frac{1}{y}\right)^2\end{cases}}\)

Đặt\(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\)

hệ tt

\(\hept{\begin{cases}a^2+a+3=\left(b+c\right)^2\\b^2+b+4=\left(c+a^2\right)\\c^2+c+5=\left(a+b\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a+b+c+\frac{1}{2}\right)\left(b+c-a-\frac{1}{2}\right)=\frac{11}{4}\\\left(a+b+c+\frac{1}{2}\right)\left(c+a-b-\frac{1}{2}\right)=\frac{15}{4}\\\left(a+b+c+\frac{1}{2}\right)\left(a+b-c-\frac{1}{2}\right)=\frac{19}{4}\end{cases}}}\)

đặt rồi tự giải tiếp

27 tháng 11 2017

Ta có:\(y=\frac{2x^2}{1+x^2}\le\frac{2x^2}{2x}=x\Leftrightarrow y\le x\)

Tương tự ta có:\(z\le y,y\le x\)

Dấu = xảy ra khi \(x=y=z\)

Đến đây dễ rồi

NV
5 tháng 3 2023

\(x^2+2z+y^2-2x+z^2-2y+3=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\)

Do \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y;z\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x-1=0\\y-1=0\\z-1=0\end{matrix}\right.\) \(\Rightarrow x=y=z=1\)

18 tháng 2 2017

Đễ thấy \(x=y=z=0\) là 1 nghiệm của hệ

Xét \(\hept{\begin{cases}x\ne0\\y\ne0\\z\ne0\end{cases}}\)

Cộng 3 phương trình vế theo vế ta được

\(\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}=x+y+z\)

Ta có: \(\frac{2x^2}{x^2+1}\le\frac{2x^2}{2x}=x\)

Tương tự: \(\hept{\begin{cases}\frac{2y^2}{y^2+1}\le y\\\frac{2z^2}{z^2+1}\le z\end{cases}}\)

Cộng vế theo vế ta được:

\(\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}\le x+y+z\)

Dấu =  xảy ra khi \(x=y=z=1\)

Vậy nghiệm của hệ là: \(\left(x,y,z\right)=\left(0,0,0;1,1,1\right)\)

PS: Tính không làm đâu nhưng mà đồng hương nên giúp nhau vậy :D

17 tháng 2 2017

nhìn hpt bự con thế này chắc xài BĐT giải r`, chờ mình tẹo :)

DD
4 tháng 8 2021

\(\frac{2}{x+y+z}=\frac{x}{2y+2z+1}=\frac{y}{2x+2z+1}=\frac{z}{2x+2y-2}=\frac{x+y+z}{4\left(x+y+z\right)}=\frac{1}{4}\)

\(\Rightarrow\hept{\begin{cases}2y+2z+1=4x\\2x+2z+1=4y\\x+y+z=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{17}{6}\\z=\frac{7}{3}\end{cases}}\)