K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

undefined

21 tháng 6 2019

\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)

\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)

\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)

\(B=3-\sqrt{x}-\sqrt{x}+3-6\)

\(B=-2\sqrt{x}\)

21 tháng 6 2019

\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3}{\sqrt{x}-6}\)

4 tháng 1 2023

Với x ≥ 0; x ≠ 9 ta có:

\(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x-3}\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\)

Vậy \(A=\dfrac{3}{\sqrt{x}+3}\).

4 tháng 1 2023

Cảm ơn ạ

2 tháng 7 2017

ta có \(đk:x>0\) \(\Rightarrow\) \(3\sqrt{x}>0\)

\(\Rightarrow\) \(\dfrac{\sqrt{x}-2}{3\sqrt{x}}< 0\Leftrightarrow\sqrt{x}-2< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)

vậy \(0< x< 4\)

10 tháng 10 2020

Ta có: \(\frac{x+\sqrt{x}-6}{x-9}+\frac{x-7\sqrt{x}+19}{x+\sqrt{x}-12}-\frac{x-5\sqrt{x}}{x+4\sqrt{x}}\)

\(=\frac{x+3\sqrt{x}-2\sqrt{x}-6}{x-9}+\frac{x-7\sqrt{x}+19}{x+4\sqrt{x}-3\sqrt{x}-12}-\frac{\sqrt{x}\left(\sqrt{x}-5\right)}{\sqrt{x}\left(\sqrt{x}+4\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+3\right)-2\left(\sqrt{x}+3\right)}{x-9}+\frac{x-7\sqrt{x}+19}{\sqrt{x}\left(\sqrt{x}+4\right)-3\left(\sqrt{x}+4\right)}-\frac{\sqrt{x}-5}{\sqrt{x}+4}\)

\(=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{x-7\sqrt{x}+19}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}+\frac{x-7\sqrt{x}+19}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}-\frac{x-8\sqrt{x}+15}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{x+2\sqrt{x}-8+x-7\sqrt{x}+19-x+8\sqrt{x}-15}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{x+3\sqrt{x}-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{x+4\sqrt{x}-\sqrt{x}-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+4\right)-\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}-3}\)

a: \(B=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-2x}{x-9}=\dfrac{x-3\sqrt{x}}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

b: \(P=A\cdot B=\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\)

Để |P|>P thì P<0

=>căn x-2<0

=>0<x<4

=>x=1

13 tháng 9 2021

a. không có ĐK, vì muốn a đc xác định cần \(\sqrt{x-9}\) và \(\sqrt{6-x}\) \(\ge0\)

mà điều kiện để \(\sqrt{x-9}\) và \(\sqrt{6-x}\ge0\) là \(9\le x\le6\)

Dễ thấy không có số nào tương thích với x

a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{3}=\dfrac{13}{6}\sqrt{6}-2\sqrt{3}\)

b: \(VT=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\cdot\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)^2\)

c: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)

\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)